I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. Vol. 74, No. 9, pp. 1663-1671 (2002)

Pure and Applied Chemistry

Vol. 74, Issue 9

Stars and stripes. Nanoscale misfit dislocation patterns on surfaces*

Raghani Pushpa and Shobhana Narasimhan

Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India

Abstract: Close-packed metal surfaces and heteroepitaxial systems frequently display a structure consisting of regularly spaced misfit dislocations, with a network of domain walls separating face-centered cubic (fcc) and hexagonal close-packed (hcp) domains. These structures can serve as templates for growing regularly spaced arrays of nanoislands. We present a theoretical investigation of the factors controlling the size and shape of the domains, using Pt(111) as a model system. Upon varying the chemical potential, the surface structure changes from being unreconstructed to the honeycomb, wavy triangles, "bright stars", or Moiré patterns observed experimentally on Pt(111) and other systems. For the particular case of Pt(111), isotropically contracted star-like patterns are favored over uniaxially contracted stripes.

* Special Topic Issue on the Theme of Nanostructured Advanced Materials

**Corresponding author


Page last modified 25 October 2002.
Copyright © 2002 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.