RECENT RESULTS ON THE VIBRATIONAL SPECTRA OF SOME INORGANIC COMPOUNDS

F. A. MILLER

Mellon Institute, Pittsburgh 13, Pa., U.S.A.

During the past few years a considerable fraction of our research effort has been devoted to inorganic substances. This work has benefited greatly by the availability of two pieces of equipment:

(i) a small grating infrared spectrometer capable of measurement down to about 70 cm\(^{-1}\);

(ii) apparatus for obtaining the Raman spectra of coloured compounds. This paper will describe some of the results of our studies.

\textbf{PCl\textsubscript{5} (Dr G. L. Carlson)}

PCl\textsubscript{5} is an interesting substance because the structure of the solid is different from that of the vapour or liquid. It is well established that it is monomeric in the vapour and liquid states, and in solution in solvents of low dielectric constant, and has a trigonal bipyramid structure of symmetry D\textsubscript{3h}. In the crystal, however, it disproportionates to PCl\textsubscript{4}+ \cdot PCl\textsubscript{6}2-. These ions have T\textsubscript{d} and O\textsubscript{h} symmetry respectively.

The Raman and infra-red spectra of the covalent form have been reported by others1. We have re-determined both, and have observed two of the low infra-red-active frequencies for the first time. This has led to changes in several of the assignments as shown in Table 1. The fundamentals for SbCl\textsubscript{6}, also re-determined by us, are included there for comparison.

If the vapour of PCl\textsubscript{5} is deposited on a cold window at \(~90^\circ\text{K}\) in the

\begin{table}[h]
\centering
\begin{tabular}{|l|l|c|c|c|}
\hline
D\textsubscript{3h} & \textbf{Activity} & \textbf{No.} & \textbf{PCl\textsubscript{5}} & \textbf{SbCl\textsubscript{6}} \\
\hline
\textbf{D\textsubscript{3h} \: species} & & & \textit{W. and B.}1 & \textit{This work} & \textit{This work} \\
\hline
\textbf{a\textsubscript{1}'} & R\textsuperscript{\mbox{\(p\)}} & 1 & 394 & 393 & 356 \\
 & 2 & 394 & ? & 307 \\
\textbf{a\textsubscript{2}''} & \textit{i.r.} & 3 & 465 & 446 & 371 \\
 & 4 & [176] & 299* & 154 \\
\textbf{e'} & R & 5 & 592 & 580 & 395 \\
 & 6 & 335 & 273* & 172 \\
 & 7 & 100 & 100 & (?) \\
\textbf{e''} & R & 8 & 280 & 280 & 165 \\
\hline
\end{tabular}
\caption{Covalent PCl\textsubscript{5} and SbCl\textsubscript{6}}
\end{table}

1 Calculated.

* Differ from the assignment of Wilmhurst and Bernstein1.

125
Table 2. Observed frequencies for ionic PCl$_4^-$, PCl$_3^-$·AlCl$_3$, Na-AlCl$_4$, and NO-AlCl$_4$ (stronger bands only)

<table>
<thead>
<tr>
<th></th>
<th>PCl$_4^+$·PCl$_6^-$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raman (cm^{-1})</td>
<td>I</td>
<td>Infrared (cm^{-1})</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>171</td>
<td>3</td>
<td>171</td>
<td>w</td>
<td></td>
<td>172</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>251</td>
<td>4</td>
<td>251</td>
<td>m</td>
<td></td>
<td>252</td>
<td>8</td>
<td>253</td>
</tr>
<tr>
<td>281</td>
<td>4</td>
<td>282</td>
<td>w</td>
<td></td>
<td>352</td>
<td>3</td>
<td>347</td>
</tr>
<tr>
<td>360</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>349</td>
<td>10 p</td>
<td>349</td>
</tr>
<tr>
<td>458</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>459</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>584</td>
<td>m</td>
<td></td>
<td></td>
<td>495</td>
<td>0</td>
<td>490</td>
</tr>
<tr>
<td>658</td>
<td>1</td>
<td>653</td>
<td>s</td>
<td></td>
<td></td>
<td>656</td>
<td>0?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PCl$_4^-$</th>
<th>Assignment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCl$_4^+$·AlCl$_4^-$ (ref. 3)</td>
<td>Na$^+$·AlCl$_4^-$</td>
<td>NO$^+$·AlCl$_4^-$</td>
</tr>
<tr>
<td></td>
<td>Raman (cm^{-1})</td>
<td>I</td>
</tr>
<tr>
<td>146</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>180</td>
<td>3 dp</td>
<td>182</td>
</tr>
<tr>
<td>349</td>
<td>10 p</td>
<td>349</td>
</tr>
<tr>
<td>459</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>0</td>
<td>490</td>
</tr>
<tr>
<td>~495</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Tables 3 and 4 for the meanings of the numbers.
usual way, it gives the infrared spectrum of the covalent form. If the film is allowed to warm up, an irreversible change occurs in which certain bands disappear and new ones appear. The end result is the spectrum of the ionic solid, PCl\(_4^+\)·PCl\(_6^-\). Gerding and Houtgraaf\(^2\) have made an assignment for both ions, but had only the Raman spectrum available. We have repeated the Raman work, have added the infrared results, and have been able to separate the frequencies for the two ions in the following way. The complex PCl\(_5\)·AlCl\(_3\) is known to actually be PCl\(_4^+\)·AlCl\(_4^-\). It was prepared and its spectrum measured. The Raman bands due to AlCl\(_4^-\) are known from work on Na\(^+\)·AlCl\(_4^-\) and NO\(^+\)·AlCl\(_4^-\) (ref. 3). The relevant spectral data for (a) PCl\(_4^+\)·PCl\(_6^-\), (b) PCl\(_4^+\)·AlCl\(_4^-\), and (c) Na\(^+\)·AlCl\(_4^-\) and NO\(^+\)·AlCl\(_4^-\) are assembled in Table 2. Bands found only in (a) must belong to PCl\(_6^-\), those which are common to (a) and (b) must belong to PCl\(_4^+\), and those common to (b) and (c) must be due to AlCl\(_4^-\). Having attributed the frequencies to the proper ions, it is a simple matter to make the assignments for each individual ion. They are summarized in Tables 3 and 4. It is remarkable how well this works out.

Table 3. Assignments of the fundamentals for AlCl\(_4^-\), SiCl\(_4\), and PCl\(_4^+\) (T\(_d\) symmetry)

<table>
<thead>
<tr>
<th>Species</th>
<th>Activity</th>
<th>No.</th>
<th>AlCl(_4^-)</th>
<th>SiCl(_4)</th>
<th>PCl(_4^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(_1)</td>
<td>R(p), i.r.</td>
<td>1</td>
<td>349</td>
<td>424</td>
<td>459</td>
</tr>
<tr>
<td>e</td>
<td>R, i.r.</td>
<td>2</td>
<td>146</td>
<td>150</td>
<td>171</td>
</tr>
<tr>
<td>f(_g)</td>
<td>R, i.r.</td>
<td>3</td>
<td>490*</td>
<td>608</td>
<td>658</td>
</tr>
<tr>
<td>f(_u)</td>
<td></td>
<td>4</td>
<td>180</td>
<td>221</td>
<td>252</td>
</tr>
</tbody>
</table>

* Gerding and Houtgraaf\(^2\) assigned this to 575 cm\(^{-1}\).

Table 4. Assignments of the fundamentals for PCl\(_6^-\) (O\(_h\) symmetry)

<table>
<thead>
<tr>
<th>Species</th>
<th>Activity</th>
<th>No.</th>
<th>(cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(_1g)</td>
<td>R(p), i.r.</td>
<td>1</td>
<td>360</td>
</tr>
<tr>
<td>e(_g)</td>
<td>R, i.r.</td>
<td>2</td>
<td>281</td>
</tr>
<tr>
<td>f(_1u)</td>
<td></td>
<td>3</td>
<td>449</td>
</tr>
<tr>
<td>f(_2g)</td>
<td>R, i.r.</td>
<td>4</td>
<td><62(?)</td>
</tr>
<tr>
<td>f(_2u)</td>
<td></td>
<td>6</td>
<td>(?)</td>
</tr>
</tbody>
</table>

CARBON SUBOXIDE (Dr W. G. Fateley)

This molecule presents one of the most interesting unsolved problems in molecular structure. In 1954, Long, Murfin, and Williams\(^5\) published a re-determination of the infrared and Raman spectrum which they interpreted on the basis of a linear structure (I). Almost simultaneously Rix\(^6\) published similar data which he claimed were incompatible with a linear molecule. Specifically, the infrared band contours were wrong. He proposed a bent trans structure (II). Electron diffraction did not really settle
the question. Stoicheff then measured the pure rotational Raman spectrum. If the molecule is linear, the line spacing would be $\sim 0.56 \text{ cm}^{-1}$, which would be easily resolved on his instrument. If it is non-linear the spacing would be $\sim 0.28 \text{ cm}^{-1}$, which would probably not be resolved. Actually an unresolved spectrum was obtained.

\[
\begin{align*}
\text{(I)} & \quad \text{O} = \text{C} = \text{C} = \text{C} = \text{O} \\
\text{(II)} & \quad \text{O} = \text{C} = \text{C} = \text{C} = \text{O} \\
\text{(III)} & \quad \text{O} = \text{C} = \text{C} = \text{C} = \text{O}
\end{align*}
\]

Stoicheff pointed out that this does not necessarily eliminate the linear structure. If the molecule were linear, but had a π_μ fundamental which is sufficiently low to be well populated at room temperature ($< 200 \text{ cm}^{-1}$), rotational transitions between the levels in this state would give the smaller 0.28 cm$^{-1}$ spacing with considerable intensity.

This π_μ fundamental should be very intense in the infrared spectrum, since it is due to the bending of the entire molecule as illustrated in (III). We have searched the far infrared spectrum for such a fundamental, covering the range 70–300 cm$^{-1}$ with pressures of at least 200 mm (usually more), and with a path length of 7.5 m. Nothing was found. We conclude that there is no low-lying infrared-active fundamental in this range, and that the lowest one is 550 cm$^{-1}$. Thus Stoicheff’s suggestion is not tenable, and the rotational Raman spectrum is incompatible with a linear structure.

We have also remeasured the entire infrared spectrum of C$_5$O$_2$ on a Beckman IR-7 instrument, and have confirmed Rix’s findings. Our somewhat better resolution has revealed a few more details, but he is correct in emphasizing that the infrared band contours do not fit a linear structure. At present we believe that his suggestion of a trans bent form (II) best fits the evidence.

C(CN)$_3$-ION (Dr W. K. Baer)

This ion presents an interesting question: is it planar or pyramidal? If the extra negative charge resides mainly on the central carbon atom (IV),

\[
\begin{align*}
\text{(IV)} & \quad \left[\begin{array}{c}
\text{N} \\
\text{C} \\
\text{C} \\
\text{N}
\end{array} \right]^- \\
\text{(V)} & \quad \left[\begin{array}{c}
\text{N} \\
\text{C} \\
\text{C} \\
\text{N}^-
\end{array} \right]^{-1}
\end{align*}
\]

one of 3 equivalent forms

this atom becomes isoelectronic with nitrogen. One would then expect the ion to be pyramidal. If the extra electron resides mainly on the three nitrogen atoms (V), the ion would be expected to be planar. One would predict
VIBRATIONAL SPECTRA OF SOME INORGANIC COMPOUNDS

the latter because \((V)\) is favoured by the higher electronegativity of nitrogen compared to carbon, and by the possibility of writing three equivalent structures.

The infrared and Raman spectra of \(\text{KC(CN)}_3\) have been obtained as both solid and aqueous solution. They support the planar trigonal structure. Similar data were obtained for \(\text{ClC(CN)}_3\).

\[
\text{Si(NCO)}_4, \text{Si(NCS)}_4, \text{P(NCO)}_3, \text{PO(NCO)}_3
\]

(Drs G. L. Carlson, W. K. Baer)

It is known that the following compounds have bent skeletons, with an angle at the nitrogen atom of 125 to 150°:

\[
\begin{align*}
\text{(VI)} & : \quad \text{H} \quad \text{N} = \text{C} = \text{O} \\
\text{(VII)} & : \quad \text{H} \quad \text{N} = \text{C} = \text{S} \\
\text{(VIII)} & : \quad \text{CH}_3 \quad \text{N} = \text{C} = \text{O} \\
\text{(IX)} & : \quad \text{CH}_3 \quad \text{N} = \text{C} = \text{S}
\end{align*}
\]

On the other hand \(\text{Si(NCO)}_4\) has been shown to be a tetrahedral molecule, with linear \(\text{Si} \quad \text{N} = \text{C} = \text{O}\) groups. \(\text{H}_3\text{SiNCS}\) also has a linear skeleton. This difference can be rationalized by postulating that in the latter compounds there is considerable double bonding between the nitrogen and the silicon. Presumably this involves the non-bonding pair of electrons on the nitrogen and an empty \(3d\) orbital on silicon. It can be represented schematically by

\[
\text{Si} \quad \text{N} = \text{C} = \text{O}
\]

Formally this makes the nitrogen atom isoelectronic with carbon, and a linear configuration results. The double bonding does not occur when the \(\text{N} = \text{C} = \text{O}\) group is attached to \(\text{H}\) or \(\text{C}\) because the latter have no suitable \(d\) orbitals. Compounds (VI) to (IX) are therefore bent.

Further examples of this effect have now been established. \(\text{Si(NCS)}_4\) has been re-examined and is tetrahedral. \(\text{P(NCO)}_3\) and \(\text{PO(NCO)}_3\) have been studied spectroscopically for the first time, and seem to be \(\text{C}_3\) trigonal pyramids as expected. Unfortunately, this does not establish whether or not the \(\text{P} \quad \text{N} = \text{C} = \text{O}\) group is linear, for if they were bent symmetrically in the \(\sigma\) planes the symmetry would still be \(\text{C}_3\).

References