close (25 km SSE) to the city of Rijeka. The second
monitoring site was on the island of Iž in the central Adri-
atic, which can be considered to be isolated from larger
pollution sources. The third site was in the southern
Adriatic in Hvar on the island of Hvar, an important tour-
ist resort (Fig. 2). To characterize a measurement site, an index de-
fined as the average ratio between the maximum and
minimum daily hourly average ozone volume fraction
was introduced\(^3\). Zero values for hourly averages were
assigned the value 0.4 p.p.b. in order to avoid division
by zero. For urban sites with strong photochemical pol-
lution, this index has a value of over 10, in the upper
boundary layer and above, where there are no sources
of precursor molecules which act also as sinks during
night-time, it is less than 2. In less polluted urban and
suburban sites as well as in some rural locations, where
some photochemistry takes place, it will be of the order
of 2 to 5 reflecting formation around noon and destruc-
tion during the night\(^4\). The corresponding values for five
measurement sites in Croatia are compared in Table 2.

Table 2. Index of photochemical pollution for five
different sites in Croatia

<table>
<thead>
<tr>
<th>Location</th>
<th>Time period</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBI (Zagreb)</td>
<td>Apr–Sep 1991</td>
<td>16.0</td>
</tr>
<tr>
<td>Puntijarka</td>
<td>Apr–Sep 1991</td>
<td>1.6</td>
</tr>
<tr>
<td>Rovinj (northern Adriatic)</td>
<td>Jun–Aug 1991</td>
<td>4.8</td>
</tr>
<tr>
<td>Iž (central Adriatic)</td>
<td>Jun–Jul 1991</td>
<td>1.9</td>
</tr>
<tr>
<td>Hvar (southern Adriatic)</td>
<td>Jul–Aug 1990</td>
<td>2.7</td>
</tr>
</tbody>
</table>

References
1. Neæak J, Jelaviæ V. The proceedings of the Sympo-
sium on air protection, pp. 31–42, 1997, Crikvenica,
Croatia.
2. Klasinc L, Butkovic V, Cvitas T, Kezele N, Lisac I,
Lovric J. In: Øystein Hov (ed.) Tropospheric Ozone
3. Cvitas T, Klasinc L. Boll. Geofisico, 1993, 16,
521–527.

Nenad Kezele and Leo Klasinc,
Rudjer Boskovic Institute, PO Box 1016,
10001 Zagreb, Croatia

New from AOAC

FDA Bacteriological Analytical Manual (BAM), 8th Edi-

For use in regulator, academic, or industry laborato-
ries, this recently updated manual contains the method-
ology currently in use in US Food and Drug
Administration (FDA) laboratories for the detection of
micro-organisms and certain of their metabolic products
in foods, beverages, and cosmetics.

The 1998 version of the 8th edition contains over 300
pages of revised material. Revision A includes updates
to selected BAM chapters and other new information. It
also incorporates editorial corrections to the 8th edition
New information includes:

- The chapter on *Campylobacter* includes a new enrichment broth, simplified sample processing procedures with product-specific flowcharts, and an improved, blood-free isolation agar.
- Procedures with enhanced sensitivity have been added to the chapter on Staphylococcal enterotoxins.
- The chapter on *Yeast and Molds* now utilizes media that retard growth of bacteria and permit more accurate enumeration of yeasts and moulds.
- The *Parasitic Animals in Foods* chapter has been expanded to include the FDA’s protocol for PCR identification and microscopic detection of *Cyclospora cayatenensis*, an emerging protozoan pathogen that has been involved in several recent food-borne outbreaks.
- Appendix 1 is a compilation of selected commercially available methods kits, which has been updated.
- Appendix 2, on Most Probable Number enumeration of bacteria has been revised to accommodate new statistical assumptions and to clarify this statistical treatment for analysts without extensive background in statistics.

Highlights of the contents

- Food Sampling and Preparation of Sample Homogenate;
- Microscopic Examination of Foods;
- Care and Use of the Microscope;
- Aerobic Plate Count;
- *Escherichia coli* and the Coliform Bacteria: *Salmonella, Shigella, Campylobacter, Yersinia, Vibrio, Listeria, Staphylococcus, Bacillus, and Clostridium* species;
- Diarrheagenic Enterotoxin;
- Yeast, Molds and Mycotoxins;
- Parasitic Animals in Foods;
- Analysis of Milk;
- Examination of Canned Foods;
- Examination of Containers for Integrity;
- Microbiological Methods for Cosmetics;
- Identification of Food-borne Bacterial Pathogens by Gene Probes;
- Investigation of Food Implicated in Illness;
- Detection and Quantification of Hepatitis A Virus in Shellfish;
- Residual Phosphatase in Cheese;
- Appendixes: Rapid Methods for Detecting Foodborne Pathogens; most Probable Number Determination from Serial Dilutions; Media and Reagents.


Federation of European Chemical Societies

Millennium Project: Celebration of the 100 most distinguished European Chemists from the Chemical Revolution to the 21st Century

The Federation of European Chemical Societies (FECS) is initiating, as a Millennium Project, the celebration of Distinguished European Chemists spanning a period of over 200 years.

Member societies of FECS are invited to submit their nominations of distinguished European chemists from, say, the end of the 18th century until the present day. In addition to Nobel Prize winners, there will be nominations of many others from Europe who have, over more than two centuries, transformed the science and influenced others across the world.

It is suggested that FECS member societies may wish to arrange for their Boards to establish a working group to develop their list of nominations. Individuals will also be given the opportunity to submit nominations via the FECS web site.

The process of evaluating the nominations will be considered by the FECS Executive Committee when it meets in September 1998.

Publicity for the outcome of the first part of the project will be considered during the next 6 months and will be aimed at the year 2000. Member societies are encouraged to let the FECS Secretariat know if they have any suggestions for publicity.

The closing date for nominations is 26 February 1999.

E. K. McEwan, FECS Secretariat,
July 1998