CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2006, Vol. 78, No. 8, pp. 1559-1570

http://dx.doi.org/10.1351/pac200678081559

Reactive intermediates in aqueous ozone decomposition: A mechanistic approach

István Fábián

Department of Inorganic and Analytical Chemistry, University of Debrecen,P.O.B. 21, Debrecen 10, H-4010, Hungary

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Gilliard María B., Martín Carlos A., Cassano Alberto E., Lovato María E.: Reaction Kinetic Model for 2,4-Dichlorophenoxyacetic Acid Decomposition in Aqueous Media Including Direct Photolysis, Direct Ozonation, Ultraviolet C, and pH Enhancement. Ind. Eng. Chem. Res. 2013, 52, 14034. <http://dx.doi.org/10.1021/ie400957m>
  • Audenaert W.T.M., Vandevelde M., Van Hulle S.W.H., Nopens I.: Impact of Dissolved Organic Matter (DOM) on Parameter Sensitivity of a Kinetic Ozone Decomposition Model. Ozone: Science & Engineering 2013, 35, 338. <http://dx.doi.org/10.1080/01919512.2013.797884>
  • Biń Andrzej K., Machniewski Piotr, Wołyniec Jolanta, Pieńczakowska Agata: Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering 2013, 35, 489. <http://dx.doi.org/10.1080/01919512.2013.821595>
  • Gardoni D., Vailati A., Canziani R.: Decay of Ozone in Water: A Review. Ozone: Science & Engineering 2012, 34, 233. <http://dx.doi.org/10.1080/01919512.2012.686354>
  • Shilov V. P., Fedoseev A. M., Ershov B. G.: Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry 2012, 54, 324. <http://dx.doi.org/10.1134/S1066362212040029>
  • Audenaert Wim T.M., Vermeersch Yoshi, Van Hulle Stijn W.H., Dejans Pascal, Dumoulin Ann, Nopens Ingmar: Application of a mechanistic UV/hydrogen peroxide model at full-scale: Sensitivity analysis, calibration and performance evaluation. Chemical Engineering Journal 2011, 171, 113. <http://dx.doi.org/10.1016/j.cej.2011.03.071>
  • Lovato María Eugenia, Martín Carlos A., Cassano Alberto E.: A reaction–reactor model for O3 and UVC radiation degradation of dichloroacetic acid: The kinetics of three parallel reactions. Chem Eng J 2011, 171, 474. <http://dx.doi.org/10.1016/j.cej.2011.04.008>
  • Contreras Edgardo M., Bertola Nora C., Zaritzky Noemi E.: Monitoring the Ozonation of Phenol Solutions at Constant pH by Different Methods. Industrial Eng Chem Res 2011, 50, 9799. <http://dx.doi.org/10.1021/ie200999h>
  • Lovato María Eugenia, Martín Carlos A., Cassano Alberto E.: Degradation of dichloroacetic acid in homogeneous aqueous media employing ozone and UVC radiation. Photochem Photobiol Sci 2011, 10, 367. <http://dx.doi.org/10.1039/c0pp00208a>
  • Fedosseev A. M., Gogolev A. V., Charushnikova I. A., Shilov V. P.: Tricarbonate complex of hexavalent Am with guanidinium: synthesis and structural characterization of [C(NH2)3]4[AmO2(CO3)3]·2H2O, comparison with [C(NH2)3]4[AnO2(CO3)3] (An=U, Np, Pu). J Radiochimica Acta 2011, 99, 679. <http://dx.doi.org/10.1524/ract.2011.1875>
  • Shilov V. P., Gogolev A. V.: Oxidation of Fe(III) to Fe(VI) by ozone in alkaline solutions. Russ J Gen Chem 2010, 80, 895. <http://dx.doi.org/10.1134/S107036321005004X>
  • Liu Zheng-Qian, Ma Jun, Cui Yu-Hong: Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. Carbon 2008, 46, 890. <http://dx.doi.org/10.1016/j.carbon.2008.02.018>
  • Mazur S., Dee G. T.: Effects of Liquid Layer Thickness on Oxidation of an Organic Monolayer by Aqueous Ozone. J Electrochem Soc 2008, 155, H263. <http://dx.doi.org/10.1149/1.2839632>
  • Mazur Stephen, Jackson Charles E.: Enhanced Electrodeposition of Cu into Recessed Features via Topographically Selective Ozonolysis of Adsorbed Accelerator. J Electrochem Soc 2008, 155, D608. <http://dx.doi.org/10.1149/1.2952524>