Chemistry International Blank Image
Chemistry International Text Image Link to Chemistry International Blank Image Chemistry International Blank Image Chemistry International Blank Image
Chemistry International Blank Image
Chemistry International Blank Image
Chemistry International Text Image Link to Current Issue
Chemistry International Text Image Link to Past Issues
Chemistry International Text Image Link to Officer's Columns
Chemistry International Text Image Link to Features
Chemistry International Blank Image
Chemistry International Text Image Link to Up for Discussion
Chemistry International Text Image Link to IUPAC Wire
Chemistry International Text Image Link to Project Place
Chemistry International Text Image Link to imPACt
Chemistry International Text Image Link to Bookworm
Chemistry International Text Image Link to Internet Connections
Chemistry International Text Image Link to Conference Call
Chemistry International Text Image Link to Where 2B and Y
Chemistry International Text Image Link to Symposia
Chemistry International Text Image Link to CI Indexes
Chemistry International Text Image Link to CI Editor
Chemistry International Text Image Link to Search Function
Chemistry International Text Image Link to Information

 

Chemistry International Text Image Link to Previous Issue Chemistry International Text Image Link to Previous Page Chemistry International Text Image Link to This TOC Chemistry International Text Image Link to Next Page Chemistry International Text Image Link to Next Issue

Vol. 28 No. 3
May-June 2006

Making an imPACt | Recent IUPAC technical reports and recommendations that affect the many fields of pure and applied chemistry.
See also www.iupac.org/publications/pac

Reference Data for the Density and Viscosity of Liquid Aluminum and Liquid Iron

Marc J. Assael, et al.
Journal of Physical and Chemical Reference Data
Vol. 35, No. 1, pp. 285–300 (2006)
doi:10.1063/1.2149380

The available experimental data for the density and viscosity of liquid aluminum and iron have been critically examined with the intention of establishing a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the density of the aluminum and iron are characterized by standard deviations of 0.65% and 0.77% at the 95% confidence level, respectively. The overall uncertainty in the absolute values of the density is estimated to be one of ±0.7% for aluminum and 0.8% for iron, which is worse than that of the most optimistic claims but recognizes the unexplained discrepancies between different methods. The standard reference correlations for the viscosity of aluminum and iron are characterized by standard deviations of 13.7% and 5.7% at the 95% confidence level, respectively. The uncertainty in the absolute values of the viscosity of the two metals is thought to be no larger than the scatter between measurements made with different techniques and so can be said to be ±14% in the case of aluminum and ±6% in the case of iron.

The work described in this paper was carried out under the auspices of the International Association for Transport Properties (formerly known as the IUPAC Subcommittee of Transport Properties). Support was provided by IUPAC under project 2003-005-1-100.

www.iupac.org/projects/2003/2003-005-1-100.html


Page last modified 25 April 2007.
Copyright © 2003-2007 International Union of Pure and Applied Chemistry.
Questions regarding the website, please contact [email protected]
Link to CI Home Page Link to IUPAC E-News Link to IUPAC Home Page