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ABSTRACT

In molten polymers, three types of structural heterogeneities have to be con-
sidered: (1) heterogeneities caused by short range order; (2) fluctuating bundles
of more or less parallel chains which are much larger than the domains with
short range order; (3) small crystals which are thermodynamically not stable
caused by heterogeneous fluctuations as discussed by Frenkel. The definition
of the three types of heterogeneities, their mutual relation and the theories
by which they are predicted are discussed. Special attention is given to the
problem of characterization of bundles and to the question of the existence
of bundles. Experimental methods, by which heterogeneities can be detected,
are critically discussed and the results are reviewed.

In the glassy state, the heterogeneities mentioned above also occur. Here,
however, they do not fluctuate but are frozen in. In some substances, in
addition, ordered regions of another kind occur which disappear after heating
above the glass transition temperature. The possible nature of these regions is

discussed.

A. INTRODUCTION

The structure of amorphous polymers influences the mechanical behaviour
as well as the crystallization process. Therefore, the investigation of that
structure is of great interest.

Various types of structural heterogeneities in molten and glassy polymers
have been discussed up to now. They are summarized in Table 1. First, we

Table 1. Types of order in molten and glassy polymers

Short-range order

Bundles of chains

Small unstable crystals (‘heterogeneous fluctuations’)
Special structures occurring only in the glassy state

mention the short-range order, which is already well-known from low mole-
cular weight substances. Short-range order means that, within small regions,
more or less regular distances between atoms occur. Secondly, one considers
regions in which the chains have a preferential orientation without showing
any crystalline order. Such structures are called chain-bundles. Thirdly,
according to Frenkel, above the melting point thermodynamically unstable,
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fluctuating crystals are always formed. All these heterogeneities exist in the
melt as well as in the glassy state. In the melt, due to thermal motion, the
structures disappear and are formed again very quickly. In the glassy state
they are frozen in.

In the glassy state, in addition to the structures frozen in from the melt
some other structures can be formed by annealing below the glass transition
temperature. They can be detected by mechanical measurement, calorimetry
and electron microscopy and they disappear after the sample has been heated
slightly above the glass transition temperature.

In what follows we will describe and classify the various heterogeneities
and their mutual relations and we will discuss the theoretical and experimen-
tal evidence.

B. SHORT-RANGE ORDER

It is well known that in liquids, melts and glasses the molecules are not
arranged completely randomly as in gases; there exists a so-called short-
range order!. We explain this effect first for the simple case of a liquid con-
sisting of small spherical molecules. Figure 1(a) shows schematically the
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Figure 1. Illustration of short-range order: (a) arrangement of atoms; (b) pair distribution function
for liquid argon!2.

arrangement of the molecules in the liquid. Due to the fact that the liquid
has nearly the same density as the crystal, the volume in the liquid is almost
completely filled with matter. Therefore, most of the molecules are in contact
with their neighbours. This affects the distance distribution function between
the molecules. Nearest neighbours have always almost the same distance.
For second-nearest neighbours, third-nearest neighbours etc. the distance
distribution function becomes gradually broader. As an example, Figure 1
shows the pair distribution function g(r) obtained by x-ray scattering for
liquid argon. g(r)Av gives the probability of finding the centre of a molecule
in a volume element Av in a distance r of a molecule considered. One sees that
all distances to the nearest neighbours lie within a very narrow range about
3.8 A, the distances to the second nearest neighbours in a broader range and
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so on. Due to these regular distances a considerable amount of order is
established within small regions.

For larger molecules, especially for polymers, the situation is more
complicated. As one obtains from scattering experiments the distances of
atoms, one has to distinguish between intramolecular and intermolecular
distances. The intramolecular distances are in many cases quite regular
because they are determined by the valence-bond-lengths and valence-bond-
angles. But also the intermolecular distances show some regularity which
again has to be interpreted as short-range order due to space filling. Figure 2
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Figure 2. Pair distribution function for molten polyethylene®.

shows the pair distribution function for liquid polyethylene obtained by
electron diffraction. One finds many peaks which are caused mostly by
intramolecular distances as for example that at 1.2 A, attributed to the
C—H distance. But there is also a broader reflection in the region of 4-6 A,
which is caused by intermolecular distances. This peak corresponds to the
‘amorphous halo’ found with x-ray scattering.

This example shows that short-range order exists also in polymers although
its investigation is more difficult there.

C. CHAIN-BUNDLES

(1) Definition and characterization of chain-bundles

Many authors assume that the molecules in amorphous polymers are
randomly coiled*!!, in the same manner as in a dilute solution. This is shown
schematically on the left side of Figure 3. On the other hand, other authors!2—1°
have come to the conclusion that bundles of chains with preferential orienta-
tion occur, as shown on the right side of Figure 3. A special model showing
bundles with chain folding was proposed by Yeh'5 and is shown in Figure 4.
A still more detailed model with bundles which are bent to form so-called
‘meanders’ was proposed by Pechhold and Blasenbrey!®. At the present time
much controversy is going on concerning the question whether bundles
exist or not. Before discussing the theoretical and experimental evidence
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Figure 3. Schematic representation of different possibilities for the arrangement of chains in
amorphous polymers: (a) randomly coiled chains; (b) bundle model.

Figure 4. Bundles with folded chains in amorphous polymers according to Yeh'S.

for bundles and randomly coiled molecules we have to treat the problem
how to define and characterize a bundle.

It is important to state that bundles are not crystals. Though the molecules
show a preferential orientation, there does not exist any long-range order.
As an example Figure 5(a) shows a non-crystalline bundle of chains in a
two-dimensional cubic lattice. In an ideal crystal all the bonds would lie
in the z-direction, and the distance between two chains would be every-
where the same [see Figure 5(d)]. Here in the bundle a considerable amount
of bonds is lying in the x-direction and different distances occur. The bundle
character follows simply from the fact that each step in the @x-direction is
compensated after one or two steps in the z-direction by a step in the ©x-
direction. In principle it is possible that the number of bonds in the @x-
and — directions is the same as that in the z-direction so that the bundle does
not show any anisotropy.

In addition, one must also mention that bundles are not identical with
short-range order regions. The short-range order in the chain-direction in
the bundle is not better than that in any other direction. Randomly coiled
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Figure 5. (a), (b), (c): Three arrangements of cubic lattice chains with equal numbers of bonds in
+x, —x and z directions but different bundle characters; (d): arrangement of chains in the
ideal crystal.

( (d)
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chains can have the same degree of short-range order as chains within a
bundle. This is so because, within every small region of short-range order,
there is no difference between randomly coiled chains and chains within a
bundle with respect to arrangement of atoms. A difference between the two
models is noticed only if one follows the chains for much longer distances.

To characterize a bundle one must find a measure for the amount of
parallelism or, as we can say, the bundle character. One has first to find the
ideal direction for the chains. In the example of Figure 5(a) this is the z-
direction. Next, one has to measure the deviations from this direction. This
cannot be done simply by the fraction of steps in directions other than the
ideal one. This is seen clearly if one compares the three arrangements (a), (b)
and (c) in Figure 5. Chain 1 has the same number of steps in each direction
in bundle (a), bundle (b), and bundle (c). The same is true for chain 2 and
chain 3. In spite of that, in (a) we have more bundle character than in (b)
and here more than in (c). Not only the number of steps in different directions
influences the bundle character, but also how the different steps follow after
each other. A better measure for the bundle character is perhaps the second
moment of the distribution of the distances between neighbouring bonds in
the z-direction.

In addition to the amount of parallelism we have to know the dimensions
of the bundle. One has to distinguish between the lateral dimension, given
by the number of chains, and the longitudinal dimension given by the number
of units of each chain within the bundle in the bundle direction. One sees
from the simple examples shown in Figure 5 that the dimensions will depend
on how bundles are defined. If only a little parallelism of the chains is
demanded we may say that (b) is one big bundle. If we demand good parallel-
ism we may see two smaller bundles in (b).

Another quantity characterizing the bundle is the amount of chain folding
on the surface.

Very important also is the average lifetime of an individual bundle. Far
below the glass transition temperature, in principle, each bundle will be
stable for long periods of time. In the melt, however, due to changes in the
conformations of the chains, the bundles will constantly disappear and will
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be formed again with other preferential orientations and at other places.
We say that the bundles fluctuate. The average lifetime of a bundle is an
important quantity. For many properties as for example viscosity, crystalli-
zation and mechanical behaviour it makes an essential difference whether
the lifetime is for example three minutes or 10~ second.

Table 2. Quantities of the characterization of chain-bundles

Amount of parallelism of the chains

Lateral dimensions (number of chains)

Longitudinal dimensions (number of units in each chain in bundle direction)
Amount of chain folding

Average lifetime

(2) Theoretical and experimental evidence for randomly coiled chains
and for bundles

(a) Space filling problems
The density of a liquid is only about ten per cent less than that of a crystal.
This comparatively high value has important consequences for the structure

and the question of order.

A first consequence, the existence of short-range order, has been already
discussed. Another important effect arises for small rod-like molecules.
This was shown first by Rehaag and Stuart?° many years ago. Models of
such molecules were shaken and the arrangement of the molecules obtained
was investigated as a function of density. Figure 6 shows the results. For small
densities, the orientations of the rods were distributed randomly [see Figure

(a) (b)
Figure 6. Arrangements of rods(a) in a system of low density and (b) in a system of high density2°.
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6(a)]. For high concentrations, regions of parallel rods are formed [see
Figure 6(b)]. The tendency for the formation of such regions increases if
attractive forces are built into the molecules by using small magnets?!.

In recent times we have calculated the size distribution of such ordered
regions by using a lattice model described elsewhere??: 23, Figure 7 shows the
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Figure 7. Fraction of rods lying in ordered regions consisting of n parallel rods as a function of n.
y is the intermolecular energy measured in kT.

fraction of molecules g, lying in ordered regions of n parallel molecules as a
function of n. The parameter y is the intermolecular energy in kT units. If y
is zero, one sees that g, decreases with increasing n. For example, approxi-
mately 15 per cent of the molecules lie in ordered regions consisting of three
molecules and about one per cent in regions consisting of six molecules. The
crosses indicate ‘experimental’ results, which are obtained from Figure 6(b).
With increasing intermolecular attraction y the number of larger ordered
regions increases.

For polymer melts the consequences of the high density were first investi-
gated by Robertson!®. This author started with a consideration of rods of
length [ and cross section diameter d (see Figure 8). The angle between two
rods is called 6. The larger 0 the more space must be attributed to one rod.
Robertson derived a relation between the largest possible angle 6 and the
density of the system. Figure 8 shows the results. Plotted is this angle 6* as a
function of the relative density, that is the density of the liquid d, divided by
the density of an ideal crystal d_. The results depend on the ratio of the length
of the rods to the diameter. For example, for I[/d = 1 and a relative density
of 0.850 the value of 6* is about 14°. This corresponds to almost parallel
alignment.

To apply these results to chain molecules, Robertson assumed that chain
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Figure 8. Maximum angle 6* for several values of //d as a function of the ratio of amorphous to
crystalline densities'®.

molecules have to be divided into such segments that the ratio //d is approxi-
mately unity. From this he deduced also that chain molecules must lie
almost parallel and must form bundles.

Fischer?* objected to the calculations of Robertson that some error was
made when the volume necessary for a pair of rods was averaged over the
angle 0. Using the right averaging, one obtains for [/d = 1 a density which is
close to the measured value, without assuming any parallelism. Parallelism
of the rods has to occur only for larger values of I/d. From this it follows that,
if one assumes Il/d = 1, bundles do not have to be formed. The assumption
of Robertson that, in polymers, I/d is approximately one is somewhat question-
able, however.

There is in addition another objection to the conclusions of Robertson,
pertinent for all values of I/d. From the way the calculations were performed,
it follows that, in the polymer, any parallelism obtained concerns only the
small segments of length [ This is seen most clearly when one considers
again the arrangement of rods in Figure 6(b). According to Robertson the
rods in each ordered region must have within some limits depending on
l/d the same direction. But not all the rods of the sample must have this
direction. The different regions may be arranged more or less randomly.
In the same way, it follows for polymers that short parts of the chain of length /
have to lie parallel rather than longer parts. No result is obtained for the
arrangement of larger parts of the chain. Therefore, the question whether
bundles have to be formed simply because of lack of space is not answered
by the investigations of Robertson.

One could try to find an answer to this question by packing wooden
models of molecules into a box. But one needs for this a tremendous number
of molecules. Therefore we decided to perform such a filling experiment by
computer simulation?>. A primitive cubic lattice of 10000 points was assumed.

214




HETEROGENEITIES IN GLASSY AND MOLTEN POLYMERS

Each molecule consisted of 100 beads connected with each other. The com-
puter introduced bead after bead into the lattice, so that each bead was
lying on one lattice point. For the first bead of each molecule the computer
chooses at random any free point in the lattice. For the following beads, the
computer had to choose one of the five lattice points' which are the next
neighbours to the lattice point occupied by the bead introduced previously.
Every time a place chosen was occupied, the computer tried again. If all five
places turned out to be occupied the computer shifted some beads lying
in the vicinity of empty points. By this procedure it was possible to occupy
87 per cent of the lattice points. This corresponds to the density usually found
in liquids. )
Figure 9 shows the average square end-to-end distance of the chains
introduced into the lattice as a function of the volume fraction of the chains
introduced during filling, that is the fraction of occupied lattice points.
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Figure 9. Average square end-to-end distance as a function of the volume fraction v, of the
chains introduced into the lattice®*.

The open point on the ordinate gives the value for a single chain in the lattice,
averaged over 298 filling procedures. One sees that the values for high con-
centrations, corresponding to the melt, are almost the same as for the isolated,
single chain. Some deviations occur for smaller concentrations; these are
due, however, to statistical fluctuations occurring because the number of
chains for which the average is calculated is smaller. From this we conclude:
In the melt, arrangements of the chains are possible in which the chains have
the same average square end-to-end distance as in a dilute solution.

In order to obtain more detailed information, we wanted to know if
some additional stretching of the chains could occur when the concentration
increases. Therefore we determined the straight parts of the chains of different
lengths. Figure 10 shows the fraction of bonds lying in straight parts of
lengths { as a function of the fraction of lattice points occupied during filling.
One sees that about 60 per cent of the bonds are lying in straight parts of
length 1, 26 per cent in straight parts of length 2 and only a few per cent in the
longer straight parts. These percentages do not depend on the concentration.
Therefore no stretching of the chains is necessary in order to increase the
concentration of chains to the value found in the melt.

In addition, the formation of bundles with completely parallel chains was
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Figure 10. Fraction of bonds lying in straight parts of length { of the chains as a function of the
volume fraction v, of the chains introduced into the lattice?*.

investigated. Such bundles are characterized by two values: the number n of
chains forming the bundle as a measure for the lateral dimensions and the
number { of bonds in the z-direction in each chain as a measure for the height
of the bundle. Figure 11 shows the fraction of bonds lying in bundles as a
function of n. Let us consider first the bundles of height { = 2. For example,
3 per cent of the bonds lie in bundles consisting of three chains, 0.4 per cent in
bundles consisting of five chains and a negligible amount in larger bundles.
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Figure 11. Fraction of bonds lying in bundles as a function of the number n of parallel chains
forming the bundle. { is height of the bundle in number of bonds?°.

Bundles of height { = 3 are still less frequent. The majority of the bonds lie
in ‘bundles’ of height 1, that means in ‘bundles’ with a single bond in the
bundle direction. Such small regions cannot be considered to be the bundles
usually discussed. Therefore we conclude: Even in the melt, it is possible to
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arrange the chains in such a way that they are randomly coiled and no
bundles are formed. The argument that bundles have to be formed because
of lack of space is not valid.

At the present time we are also investigating the formation of bundles with
defects. We also want to study the situation arising in a diamond lattice.
But we think that these investigations will not change the above result in
essence.

One is not allowed to conclude from this result, however, that bundles do
not occur. First no attractive forces have been considered which may favour
bundle formation. Secondly, the calculated conformations are not necessarily
those corresponding to thermodynamic equilibrium. Due to the fact that,
during filling, further attempts were made and even chains had to be moved
after an unsuccessful step. our calculation was not a Monte Carlo determina-
tion of the equilibrium state. It serves only to prove that arrangements with
random conformations do exist in dense systems.

Some other space problems occurring with dense systems including the
impingement of bundles were investigated by Anthony and Kréner®S. If
bundles impinge on each other different situations may occur with respect
to the continuation of the chains. They may just bend, as indicated in
Figure 12(a), or loops may occur as seen in Figure 12(b). Using a continuum

(a) (b)

Figure 12. Different situations in the impingement of bundles>®.

theory, Anthony and Kroner classified and investigated the different possi-
bilities of bundle arrangements. One must stress, however, that their theory
does not prove that bundles exist. The existence of bundles is assumed and
the consequences are investigated.

(b) Melting, rubber elasticity and viscosity

The melting of polymers as a transition from the crystalline state to a
melt with randomly coiled chains has been investigated by different
authors?? 27 It was possible to show that a first order transition can be
expected in this case. This result remains true if one assumes that small,
fluctuating bundles occur in the melt. Problems arise, however, if one in-
vestigates the transition from a crystal to a bundle which does not fluctuate
with the same dimensions as the crystal In this case, the only difference
between the crystal and the melt is the number of defects (see Figure 13).
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Figure 13. Arrangement of chains in the melt (a) and in the crystal (b) according to Pechhold and
Blasenbrey '8 28,

Pechhold and Blasenbrey?® proved that there can take place a first order -
transition between a crystal with a low concentration of defects and a
‘crystal’ with a large concentration of defects, which can be considered as a
melt. Bauer?®, however, remarked that the assumptions made in this cal-
culation are not very realistic.

Of interest also is the influence of bundles in rubber elasticity. As is well
known, rubber elasticity can be explained quite well by the randomly coiled
chain model of the melt. In addition it turned out that the assumption of
small fluctuating bundles could improve the agreement between theory and
experiment3°. It seems, however, difficult to explain the big entropy change
observed with the stretching of the sample if big, stable bundles are assumed,
especially as considered in the meander-model.

Again, stable bundles do not explain the dependence of the melt-viscosity
on the molecular weight®.

In summary, we see that melting, rubber elasticity and viscosity can be
explained by randomly coiled chains and, if one wishes, also by superimposed
small fluctuating bundles. Difficulties arise, however, if one assumes big,
stable bundles.

(c) Electron microscopy

Some indication for the existence of bundles is obtained from observations
with the electron microscope. Different authors have reported that in
amorphous polymers small balls can be observed'? 43! Figure 14 shows
such a ball-like structure observed by Yeh and Geil'* on a surface replica
of amorphous polyethyleneterephthalate. The balls have on average a
diameter of 75 A.

According to Yeh and Geil!* the balls can be observed also in transmission
electron microscopy on thin films. Of special interest is the fact that one can
see also some of the balls in the dark field by using a part of the innermost
diffuse scattering ring. This shows that the chains in the balls have a pre-
ferential orientation.
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Figure 14. Surface replica of amorphous polyethyleneterep}fthalate showing the presence of
ball-like structures!#.

Quite recently, Yeh's reported the observation of balls in the dark field
in amorphous polymers above the glass transition temperature. This means
that bundles with preferential orientation are stable for a longer time even
in the melt. It seems difficult to bring this result into agreement with the short
lifetime of a bundle deduced from n.m.r. experiments (see next section).

(d) Nuclear magnetic resonance

The shape and the halfwidth of the n.m.r. line depend strongly on the
motion of the molecule. Rigid molecules give a broad line. The broadening
is caused mainly by the local magnetic fields of the protons. If by the motion
of the molecules these local fields are averaged to zero within the lifetime of
a spin, the line becomes very narrow.

In the melt of polyethylene, one finds a very narrow line with a haltwidth
of about 20 mG. This shows that the local fields are averaged to zero!’.
What conclusion can be drawn from this result with respect to bundle
structure?

Let us consider a CH,-group in polyethylene. In order that the magnetic
field of the proton | acting on the proton 2 be averaged to zero the distance
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vector r between the two protons (see Figure 15) has to show all possible
orientations, within the transition time of a spin that is approximately 10~
second. For chains which change their conformations quickly this condition is
fulfilled. It is obvious, however, that for chains within a bundle such a motion
is not possible. This has been proved by us also by exact calculations3? 33,

Figure 15. Definition of the vector r in the CH,-group.

We have determined the second moment of the n.m.r. line of chains within a
bundle by taking into account all the possible changes of chain conforma-
tions and motions of the CH,-groups. We obtained as a result (see Table 3)
that even for bundles which show large distortion the second moment cannot
be smaller than about 1.3 G. This corresponds in the case of a Gaussian
line to a linewidth of 1.1 G. This is much more than is found experimentally.

Table 3. Bundle model and width of n.m.r. line

Linewidth of polyethylene melt (experimental): 20 mG
Calculated second moment of the line for a stable bundle: >13G?
This corresponds in the case of a Gaussian line to a linewidth of: >11G

On the other hand, if we assume that the bundles fluctuate so quickly that
every part of a chain lies within the lifetime of a spin within many bundles
with different orientations, the line may become as narrow as is observed
experimentally. So we have to conclude the following: If bundles exist, their
average lifetime must be smaller than the transition time of a spin, that is
approximately 10~# second.

Nuclear magnetic resonance also provides some evidence that fluctuating
bundles really do exist. This can be concluded from studies of the shape of
the line'” 3. From the n.m.r. theory one knows the following (see Table 4):
If the motion of all CH ,-groups can be described by a single correlation time
one obtains a Lorentzian line. The halfwidth of the line decreases with
increasing correlation time. If, however, two types of CH,-groups with
different correlation times are present one obtains a superposition of two
Lorentzian curves with different halfwidths.

Now, in a dilute solution of polyethylene we find experimentally a Lorent-
zian line [see Figure 16(a)]. In concentrated solutions and in the melt,
however [see Figure 16(b)], the line obtained can be separated into two
Lorentzian curves with different halfwidths'”>33. We can explain the super-
position of two Lorentzian lines by the formation of bundles: The CH,-
groups within the bundles and those of tie molecules have a comparatively
large correlation time of motion because the correlation time is determined
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Table 4. Shape of n.m.r. line

SH
One correlation time 7 Lorentzian line

for all CH, -groups SH~ 7

Two kinds of CH,-groups  superposition of
with different correlation two Lorentzian

times T, lines

(@)

A 0 1
H,mG H,mG

Figure 16. High resolution n.m.r. line of (a) polyethylene in solution and (b) molten polyethylene!”.

The solid lines give the experimental results. The points represent in (a) the fitted Lorentzian

line and in (b) the sum of the two Lorentzian lines (dashed and chain-dotted) which lead to a best
fit.

by the lifetime of the bundles. Therefore these groups give rise to a compara-
tively broad Lorentzian line. The CH,-groups lying in highly mobile parts
of the chains outside the bundles have a small correlation time and give rise
to a narrow Lorentzian line. This interpretation is supported also by the
following result'”: We observed that during isothermal crystallization first
the broad component decreases, which is interpreted as a crystallization of
the bundles. Later, very slowly, the narrow component decreases, which is
interpreted as a crystallization of highly mobile chains outside the bundle.

Investigations with higher resolution have shown that the line of the
melt consists of more than two Lorentzian components. This does not
change the main conclusions, however. Therefore, n.m.r. provides some
indication of the existence of bundles although, of course, bundles are not
the only possible explanation for the observed results.

(e) Electron diffraction

In 1969 Kargin and co-workers!® published the radial distribution func-
tion of molten polyethylene obtained by electron diffraction. This distri-
bution showed several sharp peaks in the region from 4-6 A which obviously
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were caused by regular intermolecular distances. This result was seen as a’
strong evidence for the existence of bundles with regular distances between the
chains.

Quite recently, however, Voigt-Martin and Mijhoff® reported that the
above-mentioned peaks in the area between 4 and 6 A are spurious effects
caused by integration limits in the Fourier transform. A correct Fourier
transform gives only a broad peak (see Figure 2) as must be expected from
normal short-range order. According to this result electron diffraction
measurements can no longer be seen as a proof of bundles with regular
distances between the chains. On the contrary, they prove that such bundles
do not exist. On the other hand, loose bundles as considered in Figure 5(a)
with no regular long-range distances can exist. With electron diffraction such
bundles cannot be detected because they influence neither the long-range
nor the short-range order.

() Light scattering

Light scattering can be caused by density fluctuation and by anisotropy.

Let us discuss first the anisotropy scattering. A bundle of ideal parallel
chains should have a considerable amount of anisotropy and therefore cause
a much more intensive light scattering than randomly coiled chains. If
parallelism is not so good, the light scattering should decrease. Dettenmeyer
and Fischer® have shown that the anisotropy light scattering of amorphous
polymethylmethacrylate is rather small. Therefore, if chain bundles exist
in this substance, the anisotropy of the bundle must be very small. The same
conclusion has to be drawn also from measurements of the birefringence in
a magnetic field!!.

It is not difficult to construct bundles with very low anisotropy in the
case of the cubic lattice chain shown in Figure 5. The construction of almost
anisotropic bundles of chains in a diamond lattice seems to be more difficult.

The investigated substance polymethylmethacrylate does not crystallize.
Of special interest is the amount of anisotropy light scattering of crystallizable
substances in the molten or glassy state. Measurements on such samples
have not yet been performed.

The light scattering of amorphous polymethylmethacrylate caused by
density fluctuations® is also small. This shows that bundles, if they exist, must
have almost the same density as their surroundings. This condition can be
fulfilled in any chain model without difficulties.

(g) Neutron scattering

Interesting information on the conformations of the molecules in the bulk
material can be obtained by neutron scattering. In order to exclude inter-
molecular scattering, one has to use a solution of a normal polymer in a
deuterated polymer. One can then determine the dimensions of the chain in
the bulk material in the same way as in the dilute solution.

Scattering experiments have been performed so far on polymethylmetha-
crylate® 7 and on molten polyethylene®. In both cases it was found that the
radius of gyration in the bulk material is approximately the same as in the
dilute solution. In addition, from the angle-dependence of the scattered
intensity, it was concluded that gaussian statistics applies to the conformations.
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The formation of longer, straight parts of the chains in bundles would
increase the statistical segment and thus also the average square end-to-end
distance and the radius of gyration* 34. Furthermore, such straight parts of
chain would also cause deviations from gaussian statistics. Therefore,
neutron scattering seems to prove that the chains are randomly coiled. This
conclusion, however, is not compelling. Yeh'> has pointed out that the effect
of increasing the end-to-end distance could be compensated by the intro-
duction of folds into the chains. Concerning gaussian statistics, one has to
investigate how strictly this has to be followed in order to obtain the observed
angle-dependence of the scattered intensity. It might be possible, perhaps,
to bring these statistics into agreement also with the bundle structure theory.

(h) Conclusions

To summarize we can say the following (see Table 5): Dense packing of the
chains does not imply as a necessary consequence the formation of bundles.

Table 5. Present results concerning the bundle problem

Requirement for space filling: No bundles necessary, but existence of bundles possible.
Melting, rubber elasticity, viscosity: Explanation seems difficult with big stable bundles.
Electron microscopy (on PET, PC etc.): Small balls, visible also in the dark field,
indicate bundles.
Nuclear magnetic resonance (on PE): Indications of bundles. Bundles have to fluctuate
if they exist.
Electron diffraction (on PE): If bundles exist, they show no sharp intermolecular distances.
Light scattering (on PMMA): If bundles exist, they must have a very small anisotropy,
Neutron scattering (on PMMA, PE): If bundles exist, the radius of gyration of a chain must
be the same as for randomly coiled chains.

Bundles may be formed but it is also possible to pack the chains in com-
pletely random conformations. Electron microscopy ahd n.m.r. experiments
give some more or less strong evidence for the existence of bundles. But if
they exist there are important restrictions concerning their properties. They
have to fluctuate. No crystal-like intermolecular regular distances occur.
The anisotropy must be very small. The average end-to-end distance of the
chains must be approximately the same as in randomly coiled chains. Of
course these results can be applied strictly only to the substances investigated
in each case. It has been shown that it might be possible to fulfil all these
conditions.

D. SMALL, UNSTABLE CRYSTALS

Besides short-range order and bundles one has to consider a third effect:
the ‘heterogeneous fluctuations’ discussed first by Frenkel®*> many years ago.
Owing to thermal fluctuations above the melting point, small crystals are
created and disappear again very quickly. No individual crystal is stable itself,
but there exists a constant distribution of crystals of different sizes. Such

223




H. G. ZACHMANN

crystals are called crystal embryos or cybotactic structures. The size distri-
bution of crystal embryos can be calculated by minimizing the free energy
of the system.

Some scientists do not accept at all the existence of different phases in the
melt. They doubt that thermodynamics can be applied to such small systems
as crystal embryos. The majority of scientists, however, use the concept of
Frenkel successfully to explain crystallization kinetics.

I will not go into further detail because the basic concept of Frenkel is well
known and often discussed. I want to point out only the following: The
crystal embryos are neither identical with short-range order nor with chain-
bundles. The order in a crystal embryo extends over much larger distances
than short-range order. It is much better developed than the order within a
bundle. In spite of these differences, however, the process of crystal embryo
formation is strongly influenced by the conformation of the chains in the
polymer. If bundles are present, it seems reasonable to assume that the
crystal embryos grow out of the bundles®®. The transformation of a bundle
to a crystal is connected with much less diffusion than the formation of a
crystal out of randomly coiled chains. Therefore the existence of bundles
should greatly enhance the crystallization process. The amount of folds in
the bundles should influence the morphology of the crystalline material
obtained®’.

E. SPECIAL STRUCTURES OCCURRING ONLY IN THE
GLASSY STATE

As already pointed out, we find in the glassy state short-range order, small
crystals and, perhaps, bundles. In contrast to melt conditions all these
structures do not fluctuate; each individual arrangement exists permanently.

Quite recently many experiments have shown that annealing below the
glass transition temperature may result in additional structures. These
structures are destroyed again if one heats up the sample for a short time
above the glass transition temperature.

Let us consider first some results in electron microscopy. Yeh and Geil'4
observed small balls in amorphous polyethyleneterephthalate. After annealing
at temperatures below the glass transition temperature the balls formed
bigger units. In amorphous polycarbonate Goddard, Frank and Stuart3®-3°
observed small balls which increased in size upon annealing below the glass
transition temperature (see Figure 17). After heating up to 160°C, the large
balls disappeared and a fine-grained structure reappeared.

In agreement with these observations one finds in mechanical measure-
ments that some secondary maximum in the loss modulus disappears and
Young’s modulus®® 3 increases upon annealing below the glass transition
temperature.

Further evidence for additional structures comes from calorimetric experi-
ments. Hoffman and Knappe*®*!' have measured the heat capacity of
polyvinylchloride containing different amounts of dioctylphthalate (DOP)
(see Figure 18). The full curves give the heat capacities for samples heated up
immediately after slow cooling. These curves show a step in the glass trans-
ition temperature without any additional features. The dotted lines represent
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{a) (b) (c)

Figure 17. Structure in amorphous polycarbonate as revealed by electron microscopy>>:
() untreated, (b) annealed 72 hours at 110°C, (c) after additional annealing at 160°C for 20 min
and quenching.
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Figure 18. Heat capacity of polyvinylchloride with different amounts of DOP as a function of
temperature*®. Full line: heating after slow cooling; broken line: heating after slow cooling and
annealing for five months at room temperature.
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the results for samples which were annealed for five months at room tem-
perature before heating. A peak appears here in addition. According to
Hoffmann and Knappe this peak is an indication that some order was formed
during annealing below T and that an additional amount of heat is necessary
in order to ‘melt’ the structures formed.

In the interpretation of peaks in the glass transition region one must be
very careful. If the heating process occurs more quickly than the cooling
process a peak may be caused by so-called enthalpy relaxation effects*? 43,
Hoffmann and Knappe showed, however, that this does not occur for the
peaks mentioned. First: Enthalpy relaxation effects should disappear with
decreasing heating rate. In their experiments the authors found that the
area under the peaks decreased a little with decreasing heating rate, but even
when one extrapolates to heating rate zero an appreciable peak remains.
Secondly: The enthalpy relaxation peak should occur slightly above the end
of the glass transition region. At least one of the peaks already occurs at
lower temperatures. Therefore also the calorimetric measurements seem to
prove that some additional order is formed upon annealing below the glass
transition temperature.

What is the nature of this order? One is tempted to say that small crystals
are formed. But the fact that these crystals disappear so far below the melting
temperature shows that some precursor of crystals may be formed rather
than real crystals. It is possible for example that groups with some interaction
like phenyl groups are aligned together. Due to the small interaction energy
these groups desintegrate immediately after segmental motion becomes
possible.

From this it is seen that the field of structural heterogeneities in molten
and glassy polymers still provides more questions than answers. Therefore,
this field is a very interesting and important object of investigation.
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