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Abstract — In the present paper a new fracture criterion, suitable for both brittle
and ductile materials, is described. The main idea of this criterion is that,
whichever is the critical quantity for crack initiation, it must be evaluated along
the elastic—plastic boundary around the crack—tip. On the one hand, the introduction
of the elastic—plastic boundary permits the direct evaluation of the size of the, so
called, "core region", and on the other hand the yield condition can be selected
properly, to describe the brittle or ductile behaviour of the specific material.

Experimental results from two glassy polymers (PNNA and PCBA) show good agreement
with the theoretical predictions, especially in the case of the ductile material.

INTRODUCTION

Many attempts have, up to now, been made for the prediction of the direction to which a crack
will propagate and the external load needed to initiate the fracture phenomenon. These
attempts have resulted to three main fracture criteria, the, so—called o-criterion (Ref.1),
S—criterion (Ref.2) and G—criterion (Refs.3 & 4).

All these criteria are applied in the same manner, the difference between them being in the
selection of the characteristic mechanical quantity, which is considered as the critical one.
Once the critical quantity is selected, its value is computed along a circle centered on the
crack tip, by using the respective expressions of the singular stress field around it. The
angle of crack extension coincides with the direction at which the critical quantity possesses
am extremum. The value of this extreme, depending on the external load, is compared with a
critical value (being a material constant). If the external load is high enough, the extreme
value is equal to the critical one and the crack propagates to the expected direction.

However, the introduction of the expressions of the singular stress field for the evaluation
of the critical quantity implies some limitations. On the one hand, these expressions are
obtained under the assumption of a linear elastic material loaded statically or dynamically.
In both types of load the linearity of the material is violated in areas in the close
vicinity of the crack—tip. Even in the case of the brittlest material an amount of plasticity
or non—linearity must exist. To avoid non—linearity a minimum radius r0 of the circle around
the crack—tip must be defined. This minimum circle was named as "core region" iRef.5). On the
other hand, the existence of core region raises questions on the nature of this region. Is
this region circular? Are there any quantitative estimations of its magnitude?

It was, silently, supposed that in the case of brittle materials the small size of the non-
linear area justifies an approximation by a circle. Although, this approximation is
apparently coarse, it gave acceptable results in case of brittle materials. However, the only
known quantitative approximation of the core region by a circle is that by the initial curve
of the caustics (Ref s.6 & 7).

But, ductile materials, like many of glassy polymers, can also fail by fracture. In this case
the assumptions of linear elasticity cease to hold at much more longer distances compared with
those of brittle materials. Then the approximation of the core region by a circle is
unacceptably rough in the case of ductile materials.

Surprisingly enough, a fracture criterion similar to the existing ones and suitable for ductile
materials did not exist. In.a few recent papers (Ref s.8,9 & 10) such an attempt was
undertaken, which resulted in the introduction of the T—criterion.

In this paper the T—criterion will be presented and its flexibility will be shown.
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THE BASIS OF THE T-CRITERION

Let consider the typical case of a thin infinite elastic plate containing a slant crack of
length 2a and subjected to uniaxial tension 00 at infinity (Fig. 1). Generalized plane stress
conditions are supposed. If the material is ductile, a part of the total energy T offered by
the external forces, will be consumed by plastic deformations, the remaining being stored as
elastic energy by elastic deformations of the material. Any increase of the externally
offered energy will drive to an expansion of the plastic zone and an increase of the elastic

Fig. 1. A slant crack under tensile load at infinity.

energy stored. According to von Mises (Ref.11) yield—condition a module of the energy
consumed for plastic deformations is the distortional part TD of the total energy.
Consequently, the dilatational part Tv of the total energy is available to cause fracture.
T is a module of the normal stresses acting in the material. According to the most modern
models of ductile fracture (Refs.12,13 & 14) normal stresses are responsible for this
phenomenon by initiating void growth and coalescence, chain rearrangement and break through
crazes in polymers and other fracture processes. Then, one has to define the maximum of
along the elastic—plastic boundary. The above remarks can be summarized as follows:
i) A crack starts to propagate when the dilatational strain-energy density T at a point in
the vicinity of its tip reaches a critical value T o
ii) As curve of evaluation of T around the crack-t-ip the elastic-plastic boundary is used,
as it is obtained from the Mises yield-condition TD=TDO.

Algebraically, the above two hypotheses are described as:

= 0

0
32T

0 (1)

TD(r,B)
=

TDO
2L=BO

The dilatational and distortional parts of strain—energy density are given respectively by:

Tv = (2)

1+v 2 2 2T = —(a +a —a a +3T ) (3)D 3E x y xy xy

where 0x' °y' Txy are the singular stresses around the crack—tip and (E,) the modulus of
elasticity and Poisson's ratio of the material respectively.

Introducing into Eqs. (2) and (3) the expressions of 0, 0y' Txy as they are given in Ref. 15.
after some algebra, we obtain:

(1—2v)K 2T = {f () + f (B)} (4)v l2itEr x y
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(l+)K2
T = {f2()+f2()-f ()f ()+3f2 ()} (5)0 6tEr x y x y xy

where:

= cos/2—l/2sinesjn3,/2—p(2sin/2±l/2sincos3/2

fy() = (6)
= l/2sincos3/2+ii(cos/2—l/2sinesin3/2)

In the above equations (r,&) are the polar coordinates around the crack—tip, p=K11/K1, and
(K1, K11) are the mode—I and —II stress intensity factors given by:

K1 = a0(ita)½sin26 , K1
=

00(ita)½sin6cos6 (7)

Fig. 2. Polar distribution of the reduced value Tv/TD of the dilatational
strain energy density around the crack tip fo =3Oo, 600, 900.

From Eq.(5) by putting TD=TD,O, we obtain for the radius of the elastic—plastic boundary:

(l+v)K2
r = xyxy (8)

In Fig. 2 the angular distribution of the ratio Tv/T0 0 is plotted for =30°, 60°, 90°. As
it is seen this ratio possesses a maximum to the direction o of the expected crack

propagation.

In the next Fig. 3 the shape of the elastic—plastic boundary is plotted, as it is given from

Eq. (8).

In Fig.4 the quantities TTv+TD, TD and Tv reduced to the constant quantity TD 0' are
plotted. Obviously, TD/TD o is a circle, because T, TD, Tv are computed along tfie elastic—

plastic boundary where TDTD 0.

However, from a physical point of view, there is no unavoidable reason to use exclusively the
Mises yield—condition for the description of the elastic—plastic boundary. Such statements,
like the Mises condition, are axiomatically imposed and experimentally verified, but the same
holds for similar statements as the Tresca or Mohr conditions. The core of T—criterion is
that the dilatational strain-energy density causes fracture outside the plastically deformed

zone. Hence, the second of Eqs (1) can be replaced by any physically equivalent yield
condition.

From the classical Strength of Materials, there are two additional yield—conditions, similar
to that of Mises. These are the Tresca and the Mohr yield—conditions (Ref.I1). The first
of them states that "a material fails when the maximum shear stress reaches a critical value"
and the second that "a suitable combination of normal and shear stresses, acting at a point,

TV/1L,O f()
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Fig. 3. The shape of the elastic—plastic boundary, according to
condition, around the crack—tip for =30°, 600, 90°.

Mises yield—

Fig. 4. Polar distribution of T, TD, T around the crack—tip, evaluated
along the Mises elastic—plastic boundary.

is necessary to produce yielding".

It is interesting to note that the Nises and Tresca conditions are generally referred to
ductile failures and the Mohr condition to brittle ones.

The Tresca yield—condition is described in the case of generalized plane stress by the relation:

01 — C

where 01, 02 are the principal stresses at the point (r,) and C a material constant.

The respective Mohr yield—condition can be given in the form:

� F(c, c2,. ..,c)

(9)

(10)

where o and T are the normal and shear stresses at a point (r,) of the material and

F(c1, c2 cn) an unknown function (the Mohr envelope), characterizing the material and
depending on the relative magnitude of. and T, the internal friction of the material, its
toughness in simple tension and simple shear and other factors reflecting the mode of
structure of the material. This function is multivalued for each material and it is
determined experimentally. The multivaluedness of this function gives rise to some
difficulties in the general application of the Mohr condition but, on the other hand, permits
specific modifications to fit to the behaviour of a specific material. However, as a first
step, this function can be considered as a one—valued material constant.

Now, after some algebra, Eqs (9) and (10) give the following expressions for the polar radius
of the elastic—plastic boundary:

Mises boundary

Crack
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Fig. 5. The shape of the elastic—plastic boundary,
yield—condition, around the crack—tip for

8K2 2 2
For Tresca: r = —1---[(f —f ) +4fx y xy

22
For Mohr: r = [(f +f )2+4((f -f )2+4f2 )½Ix y x y xy

Symbols f , f and f represent the functions £ (a), f ()x y xy x y

according to Tresca

=3O0, 600, 90°.

and given by Eq. (6).

(11)

(12)

Fig. 6. The shape of the elastic—plastic boundary, according to Mohr yield—
condition around the crack—tip for =3O°, 60°, 900.

In Fig. 5 the elastic—plastic boundary according to the Tresca yield—condition is plotted for
angles 30°, 60°, 90° and in the next Fig. 6 the sane boundary is traced according to the
Mohr. yield—condition. Comparison between Figs.3,5 and 6 indicates a considerable similarity
between the results of the three yield—conditions, disregarding a scaling factor.

In Fig. 7 the predictions of the expected angle j of crack propagation are plotted according
to the T—criterion for the three different descriptions of the elastic—plastic boundary, versus

angle of crack inclination. As it can be seen from this figure the predictions of the T—
criterion, when either the Mises or the Tresca yield—conditions are used almost coincide,
showing a maximum difference of ,20 for 6±00. On the contrary, the values of o in the case of
the Mohr yield—condition are absolutely much smaller, showing a difference of '20 from the
previous predictions for 60°. It is worth noting here that the latter predictions of o are
similar to the predictions of S—criterion, which is a typical criterion for brittle fracture.
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It is worth at this point making some remarks on the existing experimental data for the angle
of crack propagation. All the existing criteria and experimental evidence for both brittle

(Ref s.16 & 17) and ductile (Ref.9) materials more or less coincide for 8>45°.

Large theoretical deviations and experimental scattering are observed for small values of 8
(8<45°). As a general trend, it can be said that brittle polymers (like PMMA) fracture under
absolutely smaller angles, as compared to those of ductile ones (like PCBA).

Fig. 7. Angle o of crack—initiation versus angle 8, according to S— and
T—criteria, for the three yield loci. Experimental points for PNNA
were obtained from Ref s.16 & 17

This trend is predicted in a natural way be the T—criterion, since, according to the reasoning
of this criterion, the transition from a brittle to a ductile material and vice—versa, is
easily described by a suitable selection of the yield—condition.

A second remark on the experimental data, is that the scattering in the values of is much
stronger in the case of brittle polymers. This phenomenon is very limited in ductile polymers,
perhaps due to the considerable size of the plastic zone, which serves as a buffer of unstable

situations, by smoothening extreme stress values.

A third remark is that for 8<10°, angle bo can exceed —90°. It is predicted by the T—criterion

and, clearly measured in PCBA specimens (Ref.9). Values of o approaching _900 were, also,
measured in PNNA (Ref s.16 & 17).

The second and most important quantity in the fracture phenomenon is the critical load. The
predictions of T—criterion for this quantity are plotted in Fig. 8 versus the angle 8 of crack
inclination. As it was expected, these predictions almost coincide, when the two ductile
conditions (Tresca and Mises) are used for the description of the elastic—plastic boundary.
Really, their maximum difference is less than 9% for 8=20. Also, as the angle 8 of crack
inclination varies from 900 to 00, the relative increase of the critical load is '—'53% in
the case of the Nises yield—condition and '—'67% in the case of the Tresca yield—condition.

These predictions are in strong disagreement with those of all the previous criteria. For
example, the ratio equals to '-'30 in the case of S—criterion, instead of 1.53 or 1.67

in the case of the T—criterion when 8=2

However, experimental data from PCBA specimens for the critical fracture load, showed an
excellent agreement with the predictions of the T—criterion, as it can be seen in the same

figure.

The respective data from PMMA specimens show a stronger increase as angle 8 decreases, but not
so high as the predictions of the previous criteria.

The unknown form of the Mohr envelope F(c1,c2 cn), introduced in Eq. (10) does not permit,

00 30° 60° 90°

(0)
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Fig. 8. Critical stress for crack—initiation versus angle
according to S— and T—criteria, for the Mises and Tresca yield
loci. Experimental points for PNNA were obtained from Ref s.l6 & 17

for the present, the computation of the load predictions, when the Mohr yield—condition is
used. The value of this function depends, among other parameters, on the relative balance
between normal and shear stresses, i.e. it depends on angle 3. This fact permits the

computation of the elastic—plastic boundary, because, for a given , F has a constant value
and, thus, it acts as a scaling factor, not affecting the shape of the elastic—plastic
boundary. On the contrary, the computation of og/a asks for absolute values of the polar
radius of the boundary, which depend directly on tte value of F(c1,c2,.. .,cn).

In general, similar remarks, to those for the behaviour of angle L, hold for the critical
load. The experimental scattering of critical load is much more weak in ductile polymers, when
compared to that of brittle ones and the increase of the critical load is much lower, as angle

decreases.

Finally, it seems that the T—criterion is a good approximation of the fracture phenomenon and
wide enough to cover the behaviour of the materials from the brittle to ductile ones.

CONCLUSIONS

In the present paper a new fracture criterion was described. It is based on the idea that non-
linearity or plasticity, always, exists even in the brittlest material. This physical
assumption permits an insight to the complicated and dark nature of the core region around the
crack—tip and drives to a direct evaluation of this region.

On the other hand, the T—criterion connects classical ideas, like the yield—conditions, with
new concepts on fracture, like void growth and chain break, fact which indicates that old
ideas are, still, fruitful.

The predictions of the T—criterion are sensitive to the specific type of failure and, thus,
cover the behaviour of all the materials from the more ductile to the brittlest ones.
Furthermore, the already existing criteria can be considered as limiting cases of the T—
criterion. Moreover, the flexibility of adaptation to the specific behaviour of each material
is a unique property of the T—criterion.

Experimental evidence obtained from a ductile polymer showed a clear preference in favour of
the predictions of this criterion. Its predictions for brittle materials, being similar to
those of existing criteria, are equally good or bad with the predictions of these criteria.

0 300 600
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