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-- Abstract - The thermodynamics of solid surfaces is the least 
developed part of the surface thermodynamics. The Gibbs ad- 
sorption equation referred only to fluid systems, and an 
analogous equation for deformable solids was derived consi- 
derably later. Its general interpretation is complemented 
now by the concept of the tensorial anisotropic chemical po- 
tential corresponding to an anisotropic deformation state in 
a solid. Surface stresses produce the mechanical surface ten- 
sion of which the direct measurement was a great problem up 
to now. The first method of measuring surface tension of so- 
lids has been proposed very recently and is based on the ef- 
fect of deformation on solubility. 

INTRODUCTION 

The foundation of the thermodynamics of solid surfaces was elaborated by 
Gibbs (ref.1). His distinction of the work of formation of a unit surface, 
6 , from surface tension, ;3 , was an unexpected and important point of 
the theory determining the thought procession in the sequel. At the same 
time, the central statement of the theory of capillarity, the adsorption 
equation, was formulated by Gibbs only for fluid surfaces. Application to 
solids was considered by Bangham (ref.2). A generalization of the Gibbs 
adsorption equation for deformable solids was made considerably later: 
first by Eriksson for mechanically isotropic states (ref.3) and then by the 
author for a general anisotropic case, expressing the adsorption equation 
both through d and through 8 (ref.4). The step that took a century need- 
ed the understandin of two things: a tensorial character of chemical po- 
tentials in solids $essentially, it was pointed out by Gibbs, but seemed to 
be unthinkable since mass could not be a tensor) and that fact that the dif- 
ference between 6 and Y was due to the nonuniformity in chemical potenti- 
als at the surface of an even equilibrium solid. Both the points will be 
discussed in this communication. 

In addition, of interest is a discussion (initiated in ref.5) of a practical 
role of 6 and 1 in various phenomena and of their measurement methods. 
The most known are theoretical estimations for comparisonbetween d and a‘ 
(e.g., ref.6). As for experiment, the situation seems t o  be better with 
quantity 6 which participates in the Yung equation, and worse with quanti- 
ty Y for which, practically, there is no reliable data. Gokhshtein propos- 
ed a method for measuring variation in Y (ref.7) and a method of a direct 
measurement of quantity d itself has been elaborated very recently (ref.8). 
Since this method has a thermodynamic foundation, it is also worthy to be 
described here. 

THE MODEL OF A COMPLETELY ELASTIC BODY AND ANISOTROPY OF 
CHEMICAL POTENTIAL 

The model of a completely elastic body is characterized by the presence of 
at least one immobile component forming an ideal (without defects) crystal- 
line lattice. The lattice is capable of elastic deformation, but every * 

ven lattice site is occupied by a certain particle so that diffusion ogl& 
immobile component is excluded. Maxwellian viscosicy in such a model is in- 
finite (if the elasticity modulus were also infinite, we would have the mo- 
del of a completely rigid solid which is often used in the thermodynamics 
of netthe). Besides immobile components, the system may contain elso mo- 
bile ones moving freely through the whole volume of the lattice, but their 
presence is not necessary, 

The model of a completely elastic solid is a strictly equilibrium model to 
which the equations of equilibrium thermodynamics should be applicable. 
However, a difficulty arises with the definition of chemical potential of 
an immobile component (if a body is uniform in composition, it is suffici- 
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ent to consider only one immobile component (ref.1, p.194)). Chemical po- 
tential p is defined usually as the derivative of energy U with respect 
to the amodat of component j , nj, at constant entropy S, constant volume 
V of the system, and constant amounts ni of other components (mobile ones) 
if they are present: 

In the case of an anisotropic body, the condition of constant volume should 
be understood as the condition of fixed boundaries of the system, but the 
difficulty is that the derivative expressed in (1) becomes dependent of a 
finite state of deformation after a change in amomt n . In other words, 
the energy of a solid in a given volume depends not ongy on mass, but a l s o  
on the way of changing mass. 
Recognizing this difficulty, Gibbs gave up introducing ch,emical potential 
for a solid and used only ordinary chemical potential of an immobile 
component in a dissolved state (when we speak ttimmobilet’ we mean the beha- 
vior of component j in a solid, but component j is capable of dissolu- 
tion and behaves in a liquid phase as an ordinary component of solition) 
when a liquid solution is in equilibrium with a solid. Since pressure in a 
liquid is isotropic, such an equilibrium is possible only for three lattice 
planes in the solid perpendicular to the principal directionsof the pres- 
sure tensor. Gibbs derived the equilibrium conditions for these directions 
(ref.1, p.194,217). 

pj = ( aU/anj)S,V,ni (1 1 

p 3 

)A j(k) (kil ,2,3) (2) 0 
cuv - Tsv + pk - zi p i  Fi)/ 9 j 

’ 
where 9 is molecular number density, uv energy density, sv entropy densi- 
ty, pk principal values of the pressure tensor, Fj(k) equilibrium values 
of chemical potential of the immobile component in a liquid. The left-hand 
side of eq.(2) refers to a solid, the right-hand side refers to a liquid 
phase, so eq.(2) is the condition of phase equilibrium. A more general con- 
dition of equilibrium for an arbitrary plane may be derived by changing a 
liquid phase for a hypothetical solid phase where component j behaves as 
a mobile one (ref.4): 

I 

# 

( Y , - T S ~ + P , ~  - 5  P i  pi)/sj = Fj(y (3) 
-+ 

where p y  is prespre in direction ‘9 , perpendicular to the plane under 
consideration, pj( 
We return now to eq.(l) and answer the question: is it possible for a gi- 
ven solid to define a multitude of values of chemical potential related to 
different ways of introducing amount dnj into the system? There are the 
corresponding attempts in the literature (e.g., ref.8-11), Let us imagine 
that every differential of mass is characterized not only by its value, 
but also by its direction, If we add to a solid the amount of its matter 
dnj( along the direction of unit vector 3 , it means that the solid 
contracts in direction V and the emqty volume formed is filled up with 
dnj( 
neous corresponding contractions in direction x,y and z, so that three 
quantities dn 
Consequently, a directed change in amount n may be generally characterized 
by tensor d. Respectively, chemical potential E” I J for a given direc- 
tion is defined as the derivative of energy with 
along the same direction: 

corresponding value of chemical potential. 

.+ 

). Contraction in direction 2 may be represented as the simulta- 

will completely determine dn j(x): 9(Y)’ and dn j(z> j(3 1 
j 

j 

(4) 

irespect to amount n 

ftj( 3 = (aU/anj( y ))S,V,ni h 
j( makes the chemical potential tensor )* of a solid. and the set of p 

The fundamental equation for the energy of a uniform body may be written 
now in the form 

dU 

i 

0 
TdS - (6 t d$)V + Fj t dnj + 7 pichi ( 5 )  

1 
A n where T is tempersture, p the pressure tensor, e the strain tensor. For a 

given direction Y , eq.(5) becomes 
dU = TdS - p AdL,, + Pj(y)bj( I, + ? P i h i  ( 6 )  

1 
-P 

where A is the constant $long 9 cross-section area of the body, L its 
dimension in direction 3 . After integration at constant intensive vari- 
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ables, we get from ( 6 )  the integral expression 

or, in density terms, 
U = TS - P v v +  Pj(v)nj ' 5  pini 
uv = Tsv - P, + Pj(Y) 9 j + 5 P i  p i  

Comparing now ( 3 )  and (a), we obtain the phase equilibrium condition in 
the usual form 

/ 

(9) P j (  3 )  = Pj( 9 
which confirms the meaning of quantity 

Equation (8) may be written in the form 
/.L j( ) as chemical potential. 

N 

where LC: is the densityeof grand (with respect to mobile components) 
thermodynamic potential .fi (the free energy density in the absence of 
mobile components). Since the left-hand side of (10) does not depend on 
the direction, the combination of quantities on the right-hand side should 
be invariant with respect to direction. 

DIFFERENCE OF QUANTITIES U AND y 

Up to now we discussed bulk properties of a solid, but the above concept 
of chemical potential is very important for understanding surface phenome- 
na. Condition (9 )  means that chemical potentials of an immobile component 
in liquid and solid phases are equal only at the surface of contact of the 
phases and does not mean that chemical potential is the same in different 
point of a solid. Just the reverse, chemical potential of a solid is un- 
able to become uniform due to the absence of diffusion of an immobile com- 
ponent, so the nonuniformity of chemical potential may take place even in 
a truly equilibrium state of a completely elastic body. In particular, such 
nonuniformity exists always near the surface, which should be taken into 
account in calculations of excess quantities. 

We consider this problem using eq.(lO) as an example and passing to excess 
quantities for a flat dividing surface (perpendicular to the z-axis). The 
excess of the left-hand side of (10) does not depend on direction and 
yields the known quantity G (excess free energy in the case of absence of 
mobile components): - d + J 3  ) dz (11 1 

rv 
6 = ( u v -  

Superscript Q. refers to the bulk of a solid, ~3 refers to an adjacent 
phase, symbol u,p means u for z .= zo and $ for z 7 zo where zo is the 
coordinate of the dividing surface. The excess of - p,, , dependent of di- 
rection $ which now should be parallel to the surface (this follows from 
the fact that integration of (6) is carried out along the direction of uni- 
formity, i.e. in any direction to the dividing surface if we deal with the 
surface layer), is the excess surface stress 

The excess of quantity j( ) 9 may be represented as 

where I' d'pis the absolute adsorption of an immobile component on the 
side of phase & , p  . Thus, we obtain from (10) the relationship for ex- 
cess Quantities 

j 
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o( Ji 
If chemical potentials p j( and fhjc in the adjacent phases d and 
p are the same, or phase 5 is a vacuum or a gas, eq.(14) takes the form 

gv + pj(.Q) r j + 5 (  Pj(9 > -  Pj(9)) 4 j  dz (15) 
o( 4 

G 
where I' is the total adsorption of an immobile component. Eq.(15) is 
simplified if the dividing surface is chosed from condition r = 0: 

j 

of 
= 2 Y + J (  Pj(P) - Pj(V)) P j  dz 

In this case, quantity C; is the same as in Gibbs' theory. Gibbs emphasiz- 
ed a difference between quantities Q and a' which exists only for solids, 
and eq.(16) gives a good explanation: absence of migration of an immobile 
component in a completely elastic solid (slomess of diffusion in a real 
solid) leads to nonuniformity in chemical potential and, as a consequence, 
to inequality of G and Y , which never takes place for an equilibrium 
liquid. 

(1 6 )  

M E A S U R E M E N T  OF 

It is known from the theory of elasticity that the free energy of an elas- 
tic body increases both during contraction and expansion if there is no 
stress in an initial state. In particular, free energy density must be the 
same on two sides of a bent elastic plate, In Gibbet theory, the free ener- 
gy density of a solid is uniquely related to chemical potential, so one may 
say that chemical potential on the opposite sides of the plate would be the 
same if there were no stress in an initial state. Actually such a stress 
exists: this is surface tension of a solid. Symmetry disappears in the case 
of a bent plate due to surface tension. Strain, free energy density, and 
chemical potential will be higher on the convex side than on the concave 
one if surface tension is positive, and lower on the convex side if surface 
tension is negative. The difference in chemical potential on two sides of 
a plate can be measured, for example, from the rate of dissolution of the 
sides or, directly, from the equilibrium concentrations of their saturated 
solutions. 

It was established from experiments with plates of potassium chloride in 
water (ref.7) that the chemical potential of potassium chloride is higher 
on the concave side. This means that surface tension of potassium chloride 
is negative (the existence of a negative tension was predicted in some theo- 
retical estimations (ref. 6,9). The value of the excess tangential pressure 
pT in the surface layer of a solid may be calculated from the formula(ref.8). 

where 9 is density of the solid, d p  difference in the chemical potential 
of potassium chloride on the convex and concave pla t0  sides,  $ Poisson's 
coefficient, eT tangential strain. One can pass from pT to surface tension 
d by means of relationship d = - pTT' where .r is the thickness of 
the surface layer being in e uilibrium with the adjacent solution. The 

thickness of a monolayer of ions), we have 9 = - 0,12 m/rn for the surface 
layer of potassium chloride in contact with the aqueous solution. 

PT = -3a,w2(1 - 3 )  eT (17) 

value obtained was p T z  4-10 4 Pa (ref.7), and if we set'T=3.10-10 m (the 
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