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Abstract: Quantum chemistry is the field in which solutions to the Schrödinger
equation are used to predict the properties of molecules and solve chemical prob-
lems. This paper considers possible future research directions in light of the disci-
pline’s past successes. After decades of incremental development—accompanied
by a healthy dose of skepticism from the experimental community—the ready
availability of fast computers has ushered in a “golden age” of quantum chemistry.
In this new era of acceptance, theoretical predictions often precede experiment in
small molecule chemistry, and quantum chemical methods play an ever greater
role in biochemical and other larger systems. Quantum chemists increasingly
divide their efforts along three fronts: high-level (spectroscopic) accuracy for
small molecules, characterized by such techniques as Brueckner methods, r12 for-
malisms, and multireference calculations; parameterization- or extrapolation-
based intermediate-level schemes (such as Gaussian-N theory) for medium mole-
cules; and lower-level (chemical) accuracy for large molecules, characterized by
density functional theory and linear scaling techniques. These tools, and quantum
chemistry as a whole, are examined here from a historical perspective and with a
view toward their future applications. 

INTRODUCTION

For the second quarter of the 20th century, quantum chemistry was in an almost prenatal stage, gestat-
ing in the womb of quantum mechanics. In 1927, only a year after the appearance of Schrödinger’s
much-lauded wave equation, Heitler and London published the first theoretical treatment of the hydro-
gen molecule [1]. The Heitler–London valence bond model, which is still used today, was followed
shortly by groundwork for the Hartree–Fock approximation utilizing molecular orbitals [2,3]. Further
developments had their start in this time period as well, including the Configuration Interaction [4]
method, r12 methods [5,6], and the Perturbation Theory treatment described by Møller and Plesset [7].
There was even a paper describing a multireference calculation (a precursor to modern Multi-
Configuration Self-Consistent-Field theory) on two states of the oxygen atom [8]. Nevertheless, there
were many scientists who believed that a diatomic system was about as large as anyone could theoret-
ically contemplate due to the tremendous calculational undertaking. In 1929, Paul Dirac, one of the pio-
neers of the quantum theory, noted his opinion on prospects for chemical computation thusly: 

The fundamental laws necessary for the mathematical treatment of large parts of physics
and the whole of chemistry are thus fully known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too complex to be solved [9]. 

In the quantum chemical community, this quote has become a necessary preface to any discus-
sion about the field; indeed, it appears near the top of the 1998 Nobel prize citation for John Pople and
Walter Kohn as their contributions to quantum chemistry are narrated. It holds this position in the oral
history of our field because it is a dramatic example of the overall pessimism and scepticism that has
plagued quantum chemistry since the beginning, despite its many successes [10–13] and present-day
respectability. An important lesson can be learned here about forecasting in a field thought to be impos-
sible even at the time of its inception. In the better part of a century since Dirac’s ill-fated pronounce-
ment, the thing which has made quantum chemistry possible has been the improbably large improve-
ments in computer performance. This paper is devoted to an examination of research directions which
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may bear fruit, but the true advances in quantum chemistry in the next century could very well arrive
from some equally unlikely external development. 

THE SEGMENTED WORLD OF CHEMICAL COMPUTATION

From its primordial origins in theoretical chemistry, quantum chemistry has matured into a robust field
with many different features and research directions. What was once only “theoretical chemistry” now
comprises a number of different research areas: quantum chemistry, computational chemistry, molecu-
lar modeling, and even interdisciplinary specializations such as structural biology and bioinformatics.
Today, the term “quantum chemistry” has a much more circumscribed use than suggested thus far in
this article; indeed, many techniques for use with large molecules do not rely upon quantum mechan-
ics at all! Other related fields are more concerned with the classification and statistical analysis of large
amounts of data than with calculations of molecular properties. Such areas, while certainly important,
will not be detailed here as their roots lie principally in other regimes (such as computer science or
Newtonian physics). Historically, a chief tenet of quantum chemistry has been that predictions about the
structure and properties of molecules ought to be based on the quantum theory and not on parameteri-
zations, heuristics, or empirical correlations, however accurate they may appear to be. That sentiment
has changed quite a bit as the problems have become more complicated, as will be discussed below.
Regardless of the approximations being made now and in the future, however, there will always be a
difference of perception as to what constitutes a “large molecule”. 

The status quois an artificial barrier between various sizes of molecules and the level of detail in
their structure and property predictions. This is a necessary outgrowth of the finite computational power
available. While we may expect computer technology to continually improve, in the meantime we must
strike a balance between accuracy of results and speed of computation. The methods currently in vogue
and the nascent techniques of the future are discussed in these practical categories below. 

SMALL MOLECULES

We begin by examining small molecule chemistry, for it is here that the most powerful methods of quan-
tum chemistry can be utilized. Some background is necessary at this point. Nearly all ab initio quan-
tum chemical methods attempt to solve the eigenvalue problem defined by the time-independent
Schrödinger equation: 

(1)

Ψ is taken to be the exact wavefunction, with two caveats: relativistic effects account for a small
part of the energy, as do assumptions made by keeping nuclei fixed in space with respect to the elec-
trons (the Born-Oppenheimer approximation) [14]. As in any eigenvalue problem, the use of an opera-
tor upon an eigenfunction yields a numerical multiple of the eigenfunction, the multiple being the
eigenvalue. Here the operator is typically the molecular electronic Hamiltonian, consisting of all of the
kinetic and potential energy terms that act upon a system of moving electrons and fixed nuclei: 

(2)

In this equation N is the number of electrons while M is the number of nuclei. The first term rep-
resents the electronic kinetic energy, while the second and third terms are the nuclear-electronic and
electronic-electronic potential energy terms, respectively. (The nuclear kinetic and nuclear-nuclear
potential energy terms are added to the total energy after computing the electronic part.) It is the inter-
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electronic term (called r12) that makes analytical solution of the Schrödinger equation impossible for
many-electron systems. 

So if it cannot be solved analytically, how can anything be accomplished with this relation? The
first important approximation in general use was introduced near the beginning of the era—the
Hartree–Fock (HF) approximation [2,3]. In the HF approximation, the electronic Hamiltonian is
replaced with an approximate Hamiltonian identical in the first two terms, but with an effective poten-
tial νHF instead of the exact r12 term: 

(3)

The introduction of this effective potential means that each electron is subjected to a field that models
the effect of the other electrons in the system. This is a reasonable first approximation to the way that
electrons interact with each other, and many simple bonding theories are perfectly consistent with this
view, although it would be, of course, preferable to retain the interelectronic r12 interactions (more on
this later). At first the relation was solved in a strictly numerical fashion as a differential equation. The
method was made vastly more applicable with the introduction of the Roothaan formalism [15]. In
1951, Roothaan showed that there exists a procedure by which a matrix representation of the
Hartree–Fock problem may be solved iteratively, so long as a further approximation is made. Instead of
calculating the orbitals as points on a finite grid, in the analytic approximation they are expanded alge-
braically as a finite set of basis functions. These basis functions introduce a degree of chemical intu-
ition into quantum chemistry by way of the almost-universally-known orbital concept. Unfortunately,
the orbital picture is only formally true in a quantum mechanical sense for one-electron systems (such
as the hydrogen atom or H

2
+). Thus there are two very distinct conjectures being made in a conventional

HF calculation. 
From a practical standpoint, these simplifications allow an initial guess at the electron configuration

of the chemical system to produce a guess at the effective potential, which can then be used as an improve-
ment to the guess of the orbitals, etc. Once the orbitals and the potential no longer change, the iterative
calculation is complete; it is said to be self-consistent, which is why the Hartree–Fock approximation as
practiced today is generally synonymous with self-consistent field (SCF) in the literature. There is also a
built-in advantage to this procedure in that the variational theoremwill be true for this method:

(4)

such that a lowering of the energy is necessarily an improvement of the electronic description. A vari-
ational method is generally advantageous due to this straightforward figure of merit. 

Basis sets in quantum chemistry are generally built according to the notion that they should reflect
both the chemical ideas of orbitals as well as the physical reality of long-range interactions (such as
hydrogen bonding) that may be more diffuse than most conventional bonding theories would suggest.
Early research showed that Slater functions describe an orbital very well, as they maintain the cusp of
the electronic potential near the nucleus; but they are also computationally rather expensive. An alter-
native that is in general use today is to utilize sets of easier-to-calculate linear combinations of Gaussian
functions rather than Slater functions (the former are then called “contracted Gaussian basis functions”)
[16]. Other chemical hypotheses are in effect in these calculations as well, most notably in the area of
electronic spin. At first, HF/SCF calculations operated under an ironclad definition of orbital spin,
restricting the energies of α and β spin orbitals to be identical as implied by most simple models of a
chemical system. Later it was found that sometimes the electronic energy would improve if the α and
β parts of orbitals were allowed to vary (but this approach muddles the intuitive picture of clearly
defined electron configurations). This method is called the Unrestricted Hartree–Fock (UHF) method
and has been in general use for about 40 years [17]. 

The HF/SCF method, while only a starting point, is an enormously effective one. It provides a
mathematically guaranteed improvement condition via the variational principle, but it remains compu-
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tationally quite efficient. Computational methods are often rated by how well they scale, that is, how
much slower a calculation will become if its size is increased. For HF/SCF, the standard scaling is
O(N2–N3) where N is the number of electrons, which means that a system with twice as many electrons
will typically take somewhere between four and eight times as long to compute. Today, it is possible to
do quite large ab initiocalculations using this method (even proteins may be tractable for isolated inves-
tigations by 2010). Nevertheless, the conceptual underpinnings of HF/SCF are both its strength and its
downfall, for this chemical picture comes at the price of theoretical accuracy in many cases. Because of
the central field imposed by the Hartree–Fock potential, each electron is not explicitly aware of the oth-
ers’ presence. It is usually said that the HF/SCF procedure does not correlate electrons because there is
a finite probability that two electrons will occupy the same point in space. Higher levels of theory are
necessary to resolve this issue by recovering the correlation energy: 

(5)

This energy will always be negative because the Hartree–Fock energy is an upper bound to the exact
energy (as guaranteed by the variational theorem). Most of the standard high-level techniques in quan-
tum chemistry utilize the Hartree–Fock approximation as a starting point and then attempt to correlate
electrons by more rigorous (hence more expensive) computational methods. The more correlation ener-
gy that is recovered, the better the result (theoretically, at least; this certainly does not mean the answer
is closer to an experimental value!). In principle, also, the more complete the basis set, the better the
result and the longer the computation. Combine an essentially complete basis set (the “Hartree–Fock
limit”) with a completely correlated electron picture (usually called full configuration interaction after
the technique commonly used to obtain it) and the exact nonrelativistic, clamped-nuclei energy is
obtained. From there, relativistic corrections, Born–Oppenheimer diagonal corrections, and such may
be applied to find the most accurate results. Unfortunately, this ultimate solution will not be possible
for more than a diatomic molecule without increases in computational power just as dramatic as those
in the past half-century. Even then, the tremendous O(N!) scaling of a fully correlated calculation seems
to be an insurmountable difficulty for large systems. 

At this point we must therefore consider what will be the best use of resources in finding the
majority of the correlation energy. The two classes of solution methods applicable to this problem are
variational and perturbational. Mathematically speaking, variational methods treat the exact solution
as a linear combination of discrete solution sets, while perturbative methods separate the problem into
an exactly soluble part and a difficult part with no general analytic solution. Since variational methods,
by their very nature, provide an upper bound to the exact energy of the system, they are often easier to
explain as well as evaluate. On the other hand, while not variational, perturbative methods mathemati-
cally satisfy another important principle. If we were to calculate the energy of, let us say, two water mol-
ecules separated by an infinite distance, we would formally expect no interaction between them. In any
(incompletely-correlated) conventional variational method, this is unfortunately not the case. We say,
then, that the principle of size-consistencyis satisfied in a perturbative method, even though its corre-
lation may not be complete. The most popular variational post-HF method is called configuration inter-
action (CI). There are two important perturbative post-HF methods: many-body perturbation theory
(MBPT) and coupled cluster (CC). 

Configuration interaction is a conceptually simple idea that became feasible with the construction
of early computers in the 1950’s [18]. It was becoming known that the Hartree–Fock approximation was
qualitatively sound for most ground state properties of molecules. It remained, therefore, to include the
interaction energy that was due to excited states in a deterministic fashion. The standard CI method
relies on partitioning the exact wavefunction Ψ into a selected collection of smaller functions Φi and
their corresponding coefficients ci:

(6)
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Using the method of undetermined multipliers, the contributions of these other determinants (or, in
some implementations, special spin-free configuration state functions) can then be determined utilizing
the constraint of the already-known Hartree–Fock wavefunction. If this set is complete, it is a full CI
(FCI) calculation and is both variational and size-consistent (but also extremely expensive). More real-
istically, this set of determinants usually includes all single and double excitations out of the reference
determinant (denoted CISD). CISD has had a long history of providing a first step toward correlating
the electrons; many of the studies that were “high-level” in 1980 were of this variety. Quite a lot of
chemistry can be modeled satisfactorily using CISD, but nowadays it is typically augmented with triple
and/or quadruple excitations in some fashion. The most popular variant is entitled quadratic configura-
tion interaction (QCISD) [19]; it is widely used in the Gaussian-N model chemistries (see below). As a
side note, it is worth mentioning that truncated CI is not size-consistent, but that an approximate size-
consistency formula (called the Davidson correction) is defined for CISD [20]. 

Many-body perturbation theory (MBPT) was the first of the perturbative theories to evolve. Using
MBPT, we wish to solve the eigenvalue problem

(7)

where we know the eigenfunctions and eigenvalues of H
0

(8)

and will systematically improve the eigenfunctions and eigenvalues of H
0

such that they approach those
of H. This can be accomplished by producing a set of separable equations that represent various orders
of a MacLaurin series; by solving each equation the exact energy can be determined by summing the
values:

(9)

In practice, the most logical choice for H
0

is H
HF

, and the series is usually truncated at the second order.
This variant of MBPT is denoted MP2 after the Møller–Plesset formalism on which it is based [7]. The
MP2 method is a well-tested quantum chemical technique and is currently most valuable for medium-
accuracy calculations where the size of the molecule is a factor, since standard MP2 scales only as
O(N5). MP2 (and the generally more accurate MP4) are also key components of several Gaussian-N
schemes (see below). The more computationally advantageous density functional theory (DFT) may
largely supplant MP2, however, due to the methods’ similar overall empirical performance. 

Today, by far the most popular high-level ab initio quantum chemical method is coupled cluster
(CC) theory. Since its introduction into quantum chemistry in the late 1960s by Čí�ek and Paldus
[21–23], coupled cluster theory has emerged as perhaps the most reliable method for the prediction of
molecular properties. At first the method seemed overly abstruse to most quantum chemists, as it had
its formal basis in areas of mathematics not typically studied by chemists. But Hurley presented a re-
derivation of the coupled cluster doubles (CCD) equations [24] in terms which were more familiar, and
soon thereafter Monkhorst [25] formulated a general coupled cluster theory for calculating molecular
properties. By 1978, computer implementations of the theory for realistic systems were developed by
researchers led by Pople [26] and Bartlett [27]. Later, a coupled cluster singles and doubles (CCSD)
method became available [28]. Today, CCSD(T), which uses perturbation theory to compute the con-
nected triples, is probably the most popular high-level ab initio method [29]. The theory is complicat-
ed and will not be completely explained here, but it begins by suggesting that the exact wavefunction
may be described as

(10)

in which Φ
0

is a suitable reference function, usually Hartree–Fock. T is an excitation operator: 

(11)
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This exponential form makes coupled cluster theory unique among all techniques in quantum chemistry.
Unlike a CI calculation, in which the terms “single” and “double” apply to excitations out of the refer-
ence function, in a CC calculation those terms refer to all interactions associated with that quantity of
particle (i.e., one- and two-body interactions). Armed with this powerful technique, something like 97%
of the correlation energy can be extracted from just the first three terms in T. All this power is compu-
tationally expensive, though; CCSD(T) scales as O(N7), meaning that doubling the size of the chemical
system results in 128 timesthe computer time required in a straightforward implementation. 

The accuracy that can be expected in a large-basis CCSD(T) computation on a small molecule is
very good indeed; for a state-of-the-art example by Martin and Taylor, see Fig. 1 [30]. Their study of
N

2
H

2
utilized basis sets employing h orbitals, careful evaluation of core-valence effects, and anhar-

monic contributions to the zero-point energy. As a result, rotational constants were obtained to within
better than 0.1% of experiment. Studies like theirs can be expected to generate relative energies to with-
in 0.2 kcal/mol of experiment, which in many cases is probably more authoritative than experiment
itself! Such studies are very common on molecules in the 2–6 atom domain. It is regrettably true that
most organic chemistry is undertaken with larger molecules than these, but such research is still quite
valuable in determining the chemistry of important radical intermediates and atmospheric species. Of
particular usefulness to astronomers is that many interstellar molecules found in distant molecular
clouds and stars are in this size range. 

We have now largely completed our discussion of conventional ab initio quantum chemical meth-
ods. It is worth pointing out that whatever the limitations of these methods, they remain the foundation
of the field and the typical starting point for future development. The limitations of traditional quantum
chemistry drive researchers to develop new techniques which no longer have these limitations and can
thus be used to model chemistry that was previously not theoretically well described. A key area of
ongoing methods development, for example, is in the chemistry of electronically excited states. Many
reactions are photochemically activated rather than thermally activated, and so understanding the nature
of excited states is essential for such situations. Furthermore, there are a number of research directions
in spectroscopy that attempt to record the spectra of highly excited and/or short-lived species.
Conventional ab initio theories are at a loss to explain much of these phenomena, for they are formal-
ly only applicable to ground states of molecules (or, more precisely, the lowest-energy state of a given
multiplicity and symmetry class). For that matter, predicting the structure of a short-lived species using
the time-independentSchrödinger equation may be counterintuitive. For these kinds of systems, high-
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Fig. 1 trans-HNNH geometry in Å and degrees (experimental values in parentheses) determined at the
CCSD(T)/cc-pVQZ level plus core-valence interaction. See J. M. L. Martin, P. R. Taylor. Mol. Phys.96, 681
(1999). For the purposes of the present paper, N2H2 is considered a “small” molecule.



lying excited state quantum chemical methods are under development. The power of coupled cluster
theory makes it especially useful to modify into acceptable excited state methods. One popular variant
of the coupled cluster approximation called EOM-CCSD uses an equation of motion formalism to build
an effective Hamiltonian for the excited-state wavefunction [31–33]. Other ab initio methods have
excited-state algorithms as well; most of these are linear response theories [34] that are related to solv-
ing time-dependent problems and are valuable for determining excitation energies (such as configura-
tion interaction singles, time-dependent Hartree–Fock, and Green’s function methods). Such calcula-
tions are extremely versatile in the types of phenomena they can predict; they can even be used to com-
pute the properties of extended systems (such as polymers or crystals) using only a “unit cell” [35].
Ultimately, the development of true multireference methods may be the key to modeling molecular sys-
tems regardless of the electronic state, as will be discussed below. 

Another problem that manifests itself mostly in excited-state systems is a rather technical but
important theoretical weakness. The Born–Oppenheimer approximation constrains the nuclei to
remain fixed, and most computer implementations of conventional ab initio methods use the sym-
metry of the molecule to reduce computational cost whenever possible. This optimization is also an
aid in the interpretation of results. However, the electrons are not fixed, and their density is not
required to obey the same symmetry rules; the result being that in some systems the electronic wave-
function may “break symmetry” and certain properties computed from such a system will be unphys-
ical. This issue can probably be resolved, but it will require the attention of researchers in the field.
In isolated high-spin cases, quasi-restricted HF references appear to solve symmetry-breaking prob-
lems. A more general solution in coupled cluster theory utilizes so-called “Brueckner orbitals” which
can be transformed in such a way as to make the T

1
excitation operator vanish [36,37]. The Brueckner

method has already been shown to work extremely well on a number of difficult symmetry-breaking
problems. It is unfortunately not a complete solution to the problem, though, as other symmetry-
breaking phenomena may still come into play (for example, in the case of Jahn–Teller distortions as
recently shown by Crawford and Stanton) [38].

Many of the most interesting research directions in quantum chemistry have involved the solu-
tion of multireference problems. Chemically speaking, a multireference system is a molecule or reac-
tion in which the one-electron approximation is not only quantitatively but also qualitatively wrong.
Practically all reactions that involve bond-breaking are of this type, as are some low-lying excited
electronic states of many molecules. In such situations, the typical HF wavefunction is not a good
description of the system, and something more complex is necessary to reproduce the chemistry. This
idea has a long lineage in the field, starting with Hartree [8] and continuing to the present day. The
simplest idea is the multiconfiguration self-consistent-field (MCSCF) technique, which performs an
HF/SCF calculation upon a set of configurations chosen for their chemical importance. More gener-
al techniques mainly differ as to how the various determinants are included in the wavefunction; per-
haps the most popular method is the complete active space self-consistent Field (CASSCF) method
developed by Ruedenberg and co-workers and Roos and co-workers [39,40]. Using CASSCF, the ref-
erences are selected by choosing an “active space” of several chemically important orbitals and per-
forming a FCI in the span of the active space. For example, if there were eight orbitals, five of them
filled, and the highest occupied molecular orbital (HOMO; containing two electrons) and lowest
unoccupied molecular orbital (LUMO) were chosen to be active, then there would be four references
chosen. Configurations resulting from excitations out of the filled-core orbitals and/or into the inac-
tive unoccupied virtual orbitals should in principle represent high-lying excited states of lesser
importance. If it appears necessary to include excitations into the higher orbitals, a perturbational cal-
culation is performed on each reference to improve the correlation description. Such a calculation is
referred to as CASSCF plus second-order perturbation theory, or CASPT2. If a completely varia-
tional method is desired, then a multireference version of the CI method (MRCI) is the method of
choice. It requires, of course, a great deal more computational power to properly elucidate the struc-
ture and properties of multireference systems and reaction mechanisms. 
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What is the future of multireference methods? There are a number of intriguing possibilities.
MRCI is valuable, to be sure, but size-consistency corrections for multireference CISD are not trivial
to determine. CASPT2 is an excellent general-purpose method for handling many systems, but it is still
not general enough to treat certain problems with quasidegenerate high-lying excited states such as
some Rydberg states which are of interest to spectroscopists. It would be especially nice to have other
readily applicable multireference methods to go along with MRCI and CASPT2. Multireference cou-
pled cluster would be the most attractive, as one could then apply CCSD and CCSD(T) with more con-
fidence toward systems with low-lying excited states. In the MRCC realm, there are formalisms which
are state-selective (Hilbert space) [41] and thus more computationally efficient, and there are also for-
malisms which are state-universal (Fock space; e.g., they can provide energies and properties for a man-
ifold of excited states simultaneouslyin each iteration)[42]. At this point, many of the implementations
are based upon Møller–Plesset partitionings which are limited to two-configuration CC from a practi-
cal computational standpoint (although they are nevertheless quite useful for describing open-shell sin-
glet excited configurations). Recently, however, some very promising improvements were made in this
area; Hubač and co-workers have successfully demonstrated a Brillouin–Wigner partitioning formalism
that can be applied to larger molecular systems [43,44]. These calculations are currently at an experi-
mental stage, but such work may eventually provide an alternative to the established multireference
methods. It is not yet clear if the CC advantage will be offset by the increased complexity of the MRCC
method—only time will tell. A similar situation is probably in store for quasidegenerate perturbation
theory (QDPT), which in some forms is truly MRMP2 and in others state-selective [45–48]. QDPT, like
MRCC, is still in a developmental stage. There have been some impressive results on small molecules
using the state-specific methods, but the progress on state-universal methods is slow. Probably QDPT
will never be as popular as MRCI or even MRCC, since MP2 may slowly disappear as density func-
tional theory gains ground. 

As a final topic of discussion in small molecule ab initio methods, let us return to the fundamen-
tal approximations of Hartree–Fock theory. All of the work described above depends on the notion of
an effective potential to replace the interelectronic term in the electronic Hamiltonian. Such a potential
is smoothly defined from a mathematical perspective, and it is because of this smoothness that it is fun-
damentally an unsatisfactory description of the electronic Schrödinger equation. It has been long
acknowledged that the true Hamiltonian form displays singularities in the Coulomb potential at the
points where electrons would exist at the same position. These are called “coalescence points”, and they
imply that there will be irregularities in the first and higher derivatives of the wavefunction with respect
to the interelectronic distance r12. These electron–electron and electron–nuclear cusp conditions were
shown by Kato in 1957 [49]. A smooth potential will not intrinsically model this cusp and therefore will
be subject to slow convergence behavior. With a finite amount of time and resources on our hands, we
are always interested in finding methods with faster convergence properties. 

Fortunately, a solution to this problem has been known since the early days of quantum mechan-
ics. Hylleraas attacked the problem of the ground-state helium atom with expansions that were explic-
itly dependent on r12. His three-term trial wave function including a linear r12 term variationally opti-
mized by hand [5] yielded an energy within ≈0.6 kcal/mol of the exact nonrelativistic value—it would
require ≈30 terms in a CI calculation (and a computer, obviously) to match that feat! Calculations in
1994 incorporating more complicated expansions have achieved results approaching the exact nonrela-
tivistic energy of He atom to within 10–12 kcal/mol [50]. Earlier, Kolos and Wolniewicz reported accu-
rate r12 energies for the hydrogen molecule, including nuclear motion beyond the Born–Oppenheimer
approximation and relativistic and radiative effects [51]. The reason for this fast convergence is that the
r12 terms provide the necessary electron–electron cusp behavior. 

Can we extend this technique to the province of small molecule quantum chemistry? It appears
the answer is “yes”. Extending Hylleraas’ approach to systems containing three or more electrons
results in some very difficult mathematics. More realistic explicitly correlated methods are of two types.
The first type uses Boys’ Gaussian-type geminal (GTG) functions instead of normal basis functions,
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with the explicit dependence on the interelectronic coordinate built into the exponent of the integral
[52]:

(12)

While the resulting integrals are certainly less bothersome than in a Hylleraas-type CI expansion, a
number of technical problems remain to be solved before the method will be applicable to chemical sys-
tems. A Gaussian-type geminal is nothing but a product of two normal Gaussian basis functions with
an additional factor of the form e–γr

ij
2; hence expansions in terms of GTGs do not rigorously satisfy

the cusp condition. Another variation of interest is due to Kutzelnigg, in which a degree of dependence
on r12 is introduced into the theoretical method (i.e., MP2 or CC) itself, using the idea that such terms
will improve the traditional high-level methods to the point that the electron–electron cusp problem will
be properly treated [53]. These “linear r12” methods utilize a modified version of molecular integral
codes to avoid some of the problems associated with explicit r12 terms. Practical computations have
already been performed using the MP2– r12 method on molecules as large as ferrocene. Both of these
techniques show significant promise and could very well be in standard usage in the next quarter-cen-
tury. 

MEDIUM MOLECULES

Slightly larger molecules, which include most of the interesting species in organic chemistry (ring sys-
tems and dendrimers, for example), cannot easily be treated with the highest-level methods.
Furthermore, if a system includes metal atoms (like many active sites of proteins or organometallic
compounds), the systems can become intractable at higher levels of theory. Thus the compromise
begins. First approximations appear in the sense of purely theoretical examinations of basis set conver-
gence. For small systems, very large basis sets may be used, but for larger systems (the cutoff being as
few as 12 atoms presently) such computations are impractical. If some extrapolation were possible, the
smaller basis set would suffice as a good estimate of the final properties could be determined by apply-
ing the extrapolation. This is the premise behind the infinite-basis-set extrapolation techniques. Most of
these methods use the “correlation-consistent” [54] basis sets developed by Dunning and co-workers or
the atomic natural orbital (ANO) [55] basis sets introduced by Almlöf and Taylor. Extrapolation tech-
niques can be more computationally demanding than the other intermediate-level methods, but from a
quantum chemical perspective, they are also more aesthetically pleasing. 

It is also at this point that empiricism becomes more acceptable as well, for assumptions may be
made as to the properties of a molecule based on molecules similar to it. Various theories, following the
example of the Gaussian-N (G2, G3, etc.) [56] and the complete basis set (CBS) [57] methods, apply
certain low-level methods in a specific order to the molecule and on fragments of it in certain categories
(i.e., homodesmic reactions and such), in an effort to emulate a higher-level method by inductive rea-
soning. These methods have been quite successful for thermochemical predictions, an area in which
molecular mechanics methods are often less reliable. One example of such a theory, the conventional
G2 theory, utilizes the following quantum chemical techniques, basis sets, and empirical parameters to
determine the model chemistry energy: 

(13)

(14)

(15)

(16)
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(17)

(18)

Other versions of G2 and later theories [58] use DFT [59] or even CCSD(T) [60] calculations in the
model. Effective core potentials have also been used instead of conventional basis sets to reduce com-
putation times [61]. The rationale behind each model chemistry is determined by a fitting to a library
of compounds, called the test set [62]. The G2 test set as originally formulated is comprised of 125 mol-
ecules representing a variety of general and difficult cases in organic chemistry; later test sets contain
more compounds, but a difficult balance must be struck between wide applicability and overall accura-
cy. This is due to the uncertainties associated with the experimental results used in each parameteriza-
tion, as well as a general phenomenon of all parameterization schemes. It is, of course, possible to add
more and more methods with increasing numbers of terms so as to better predict a greater variety of
compounds. Unfortunately, such a scheme may become “overtrained” and be generally applicable only
to those compounds in the set—which is hardly the outcome desired! These methods are nevertheless
a subject of great interest and importance, for we cannot expect to use our most powerful methods on
larger systems anytime soon, if at all. By contrast, CBS and Gaussian-N are already computationally
feasible for medium molecules and have the potential to become the de factostandards, as they are
implemented in the popular Gaussian suite of programs. At present, G2 theory can provide thermo-
chemical energies within 1.4 kcal/mol and CBS-Q to about 0.8 kcal/mol of experiment, which is sig-
nificantly less accurate than the CCSD(T) work detailed in Fig. 1 [30]. Nevertheless, there is little doubt
that since they are capable of providing relative energies and properties approaching chemical accura-
cy, they will account for many accurate computations during the next 10–20 years. 

The truly spectacular development in this new quantum chemical era is density functional theory
(DFT). Density functional studies of organic and inorganic systems abound in today’s literature. For
example, as early as 1998 it was possible to report all-electron complete geometry optimizations for
Fe

3
(CO)

12
with two DFT methods and a flexible basis set [63]. Extension to systems as large as

Co
6
(CO)

16
is already feasible, again with good basis sets, explicit consideration of all electrons, and full

geometry optimization. Especially common are studies of organic molecules and reactions that have a
number of conformations and/or fragments; DFT can compute the structure and properties of these
species with reasonable accuracy but cannot always be relied upon for relative energetics of such con-
formers, as was recently shown in the case of [10]annulene (see Fig. 2) [64]. DFT represents somewhat
of a departure from conventional ab initio quantum chemical methods in that it does not formally deal
with wavefunctions, but rather with the electron density. In some revolutionary work done the early
1960s, Kohn and co-workers discovered that all ground-state properties of a molecular system could be
completely described using only the electron density and the (fixed) nuclear positions. The first
Hohenberg–Kohn theorem [65] proved the existence of a unique functional relationship between the
electron density and the electronic Hamiltonian. Thus, if the exact relationship were known we could
compute all of the molecular properties using only the electron density (which depends on only three
coordinates) and avoid the building of a wavefunction (which depends on 3n coordinates). Much of the
development work in modern-day quantum chemistry is directed toward discovering the true nature of
this functional relationship. 

From a practical perspective, the most important advance was made in 1965 by Kohn and Sham.
Utilizing the well-developed iterative techniques of the HF/SCF method, a computationally feasible
approach to DFT was found which avoided the explicit construction of the electronic kinetic energy por-
tion of the energy functional. This formalism is called Kohn–Sham density functional theory (KS-DFT)
[66] and it can be fairly easily implemented with computation times comparable to conventional SCF
procedures. The chief difference between the SCF and KS-DFT approaches lies in the exchange-corre-
lation (XC) density functional, which accounts for both electron correlation and nonclassical exchange
effects on the energy. If the exact form for the XC functional were known, the KS-DFT approach would
give the exact energy. KS-DFT therefore requires the construction of accurate XC functionals. Its com-
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putational efficiency rivals that of the HF/SCF procedure while incorporating (at least approximately)
electron correlation and exchange. 

Early DFT-related methods such as Thomas–Fermi theory, Xα, and the local density approxima-
tion (LDA) were in large part based upon fitting the functionals to the theoretical electron gas. Not sur-
prisingly, these were useful in solid-state physics (where periodic boundary conditions dictate a signif-
icant part of the electronic structure) but not nearly as impressive for chemical systems. The first truly
successful DFT functionals, the generalized gradient approximation (GGA) functionals, were of the
KS-DFT variety and relied on XC terms designed using density gradient corrections. Some of the most
popular functionals are of this type, including the Becke-88 (B88) exchange functional [67] and the
Lee–Yang–Parr (LYP) [68] and Perdew-86 (P86) [69] correlation functionals. These functionals were
still found to be lacking for nonlocal molecular phenomena, and so hybrid functionals were built that
contained some proportion of exact (i.e., HF) exchange. Of this type, the Becke three-parameter
exchange functional (B3) [70] is still the most common. If exchange and correlation functionals are
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Fig. 2 Fully optimized structures of the “twist” conformation of [10]annulene, C10H10, computed using a 
Dzd basis set and several different quantum chemical methods. See R. A. King, T. D. Crawford, J. F. Stanton, 
H. F. Schaefer. J. Am. Chem. Soc. 121, 10788 (1999). For the purposes of the present paper, [10]annulene is 
considered a “medium” molecule.



combined, modern DFT functionals (B3LYP, BP86, etc.) are the result. Currently, DFT enjoys an enor-
mous amount of acceptance for predicting molecular structures and properties due to its relative accu-
racy and increased speed over other quantum chemical methods. Systems involving bond-breaking or
weak bonds are still problematic, however. The next phase of DFT functionals may be the meta-GGA
or τ-dependent functionals, which remove the necessity of exact exchange by substituting the kinetic
energy gradient [71–74]. Certain improvements can be realized from a more theoretical route by per-
forming the calculations numerically (basis-set-free) as in Becke’s NUMOL program [75], but this
appears to be very expensive when high precision is required. Though DFT is formally a theory of the
ground state, time-dependent DFT (TD-DFT) methods [76,77] have been implemented using estab-
lished linear-response formalisms from HF/SCF and CC theories, providing encouraging results for the
energies and time-dependent properties of singly excited states. In addition, certain implementation-
related optimizations are possible. An example is grid-free DFT, which allows calculation without a
numerical grid but instead using a nonlinear equation solver to fit the integrable functional form [78].
Further improvements to KS-DFT are clearly an area of frenetic theoretical interest. 

Unfortunately, while in principle DFT theory is not empirical, we do not have the exact functional
and should not expect to. We must therefore continue to develop functionals that perform increasingly
well on the compounds of choice, often using parameters found in a manner similar to the above dis-
cussion of theoretical model chemistries [79]. Recent work in this direction has produced functionals
fitted to as many as 429 chemical systems [80]. There is some promising work in forming a strategy for
improvement of functionals based on coupled cluster theory and other high-level methods [81].
Regardless, to date there have been no successful attempts to systematically improve a functional on a
purely theoretical basis in an effort to find the exact functional. Until such time as a method may be
found, we must be content with the rather ad hocfunctionals being developed today. However, we can-
not dispute the enormous significance of this method, for it dramatically reduces the computational cost
of a calculation while still satisfying many of the sound principles of ab initio quantum chemical meth-
ods. DFT has every indication of being the dominant medium-to-large molecular method for some time
to come. 

LARGE MOLECULES

There is little question that the great advances in medicine have been one of the most impressive devel-
opments of the 20th century. The turn of the twentieth century brought humankind a rudimentary under-
standing of organic chemistry and how medicines might be developed, and during the rest of the cen-
tury (peacetime or otherwise) a great deal of effort was expended in advancing chemical and biological
knowledge so that disease might be eradicated and the overall quality of life elevated. With that in mind,
the turn of this new century appears to be a time when understanding has become great enough that
never-before-seen molecules may be designed with a view toward producing new drugs. Unfortunately,
knowledge is not yet to the point that it is understood what makes some molecules biologically active
and others biologically inert. Much of the work in large-molecule chemical computation involves
molecular mechanics, genetic algorithms, or semiempirical schemes that are very fast compared to high
level ab initio quantum chemical methods but typically not as accurate; such techniques, ranging from
statistics-based quantitative structure–activity relationships (QSAR) to classical-physics-based molec-
ular dynamics (MD) [82], belong to computational chemistry. These methods rely on simple models
and empiricism mostly by necessity, for even a Hartree–Fock calculation is difficult on a biomolecular
system such as a protein. How can quantum chemistry play a role in this? We, too, must make some
adjustments. 

Some of the methods available today attempt to explicitly handle certain interactions while
replacing other interactions with computationally simpler approximations. Pseudospectral methods
achieve computational advantages by treating the electron–electron repulsion term numerically, while
other terms are treated in a conventional manner [83]. Hybrid methods that are quantum mechanical in
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nature can perform, say, a CCSD(T) calculation on the active site of a molecule and a Hartree–Fock (or
molecular mechanics) calculation on the rest, for much better performance in the local area of particu-
lar interest [84]. Other techniques focus more on the intrinsic differences between small and large
molecular systems, deliberately neglecting the fine points that would be important in small molecules
and instead examining the effects that more significantly affect a large molecule. For example, the con-
cept of an “equilibrium geometry” is meaningful for a triatomic molecule existing in a vacuum at near
0 K but is less valuable for a DNA strand existing in solution at body temperature. Solvation methods
are in development for precisely this reason. Some of these methods postulate a mathematical relation-
ship between solvent and solute in a manner similar to QSAR [85]. Other models are more explicit as
to their theoretical description, as in local-density-functional MD [86,87] or in the electrostatic polar-
izable continuum model (PCM) [88]. Another possibility lies in applying a simple “reaction field” cor-
rection to an SCF procedure, much like KS-DFT adds its exchange–correlation terms; such Self-
Consistent Reaction Field (SCRF) methods [89] have been extended to coupled cluster theory [90] and
incorporated into the popular SMx semiempirical solvation technique [91]. Further development into
large-molecule-specific methods will most likely be guided by specialists in other fields and will be cru-
cial to continued progress in those areas. 

The above discussion notwithstanding, the foundation of ab initio quantum chemistry remains
sound even if the questions it answers may be more specific than actually necessary for most large mol-
ecules. Researchers continue to increase the practical size for such computations through efforts unre-
lated to external improvements in computers. Indeed, quantum chemistry has a history of improving
algorithms on a fundamental level in order to eke out more computational power; the analytic deriva-
tive techniques are an excellent historical example [92]. At first, most geometry optimizations of the
HF/SCF variety were done by hand, point by point, until an energy minimum was found. It was even-
tually realized that optimizations could be performed much faster if derivatives of the energy with
respect to nuclear coordinates could be calculated analytically. In fact, many molecular properties could
be more easily computed if derivative codes were readily available. Analytic derivatives for HF/SCF
were pioneered by Pulay in 1969, and similar methods for MP2 and CISD were fairly quick in follow-
ing [93–95]. Today, just about every method in general use either has analytic derivatives implemented
or is in the process of being implemented. Similarly, direct methods followed this same type of evolu-
tion. As soon as it was realized that it would be possible to compute molecular integrals on-the-fly
rather than store them, the size of chemical systems available for study increased tremendously [96]. CI
theory also benefited greatly from a conceptual reformulation called the graphical unitary group
approach (GUGA) [97,98]. 

Linear scaling techniques appear to be the vanguard of this type of algorithmic research. The high
scaling associated with coupled cluster (i.e., O(N7) for CCSD(T)) and other theories can be alleviated
by sacrificing a little accuracy along the way or more efficiently implementing the methods, allowing
them to be used on much larger systems than otherwise would be practical (or even possible). Such
work hinges on the revelation that while two-electron repulsion integral evaluation scales as O(N4), the
number of important two-electron integrals scales as only O(N2). Therefore it would appear that there
is no physical reason why a program could not be written that would compute only those integrals
which are truly necessary to perform the calculation. Most of these algorithms, currently under exami-
nation primarily for integrals in HF/SCF or DFT methods, utilize a polynomial (or “multipole”) expan-
sion of the r

12
–1 integral component. By expanding and partitioning the integral overlap density into

interacting components, these techniques (such as the Fast Multipole Method or the Recursive Bisection
Method) [99–101] can achieve linear or near-linear scaling with very little loss of rigor. The future of
large-scale quantum chemical calculations may be found in the roots of this preliminary development,
a most impressive example of which was recently reported by Scuseria (see Fig. 3) [102,103]. 

Ultimately, highly parallel machines may very well be the most cost-effective way to solve many
of the computational bottlenecks [104]. By combining large numbers of powerful computers (a term
which now includes most personal computers as well), as long as an efficient parallel algorithm can be
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found, we should be able to extend some of the higher level ab initio quantum chemical methods into
the biomolecular and metal cluster regime. With the aforementioned theoretical developments com-
bined with the ever-increasing power of computers, some of the methods listed in the previous section
should become tenable even for large molecules in the next decade or so. 

THE GREAT UNKNOWN: COMPUTING TECHNOLOGIES

This paper began by pointing out quantum chemistry’s greatest ally in its development: constant
improvement in computing technology. The increase in computing power has been exponential in
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Fig. 3 A 1026 atom fragment of RNA, calculated using linear scaling DFT at the LSDA/3-21G level. See
G. E. Scuseria. J. Phys. Chem.A 103, 4782 (1999). For the purposes of the present paper, this RNA fragment
is considered a “large” molecule.



nature for quite some time, while costs continue to plummet as older technology becomes common-
place. Indeed, there is a prediction coined “Moore’s Law” which states that the speed of computers will
double approximately every eighteen months with no additional cost. It is not, of course, truly a law,
but only a surprisingly accurate picture of the current technology sector. How much longer will this
growth continue? It would appear that the answer is “until chip manufacturers reach the 157-nm barri-
er.” Below that wavelength, there are currently no known lasers. Even before reaching 157 nm, small-
er photolithography for processor designs will necessitate moving production into the vacuum ultravi-
olet, and costs will increase considerably for such conditions as compounds in the air will interfere with
the transmission of radiation. Many experts believe that Moore’s Law will cease to be true in the next
10 years [105]. 

Is this the end, then, for improvements in computing speed? It would certainly be shortsighted to
suggest so! It is true that the current situation seems to suggest a future plateau, but it is most certainly
not a permanent one. New lasers will probably be found to continue the miniaturization down to the
point of theoretical breakdowns due to the increasingly quantum–mechanical effects such as tunneling.
At that point some other method will have to be used to improve speed further. Some of the possibili-
ties are in directions varied, far-reaching, or bizarre. Quantum computers, which could potentially use
the superposition of states to perform many calculations simultaneously, have been demonstrated on a
prototype scale [106]. It is unclear how algorithms would be written for such a “nondeterministic” com-
puter, but the idea is promising. Other possibilities include biocomputing (using bacteria or DNA to per-
form computer-like functions) [107], nanocomputing (small chemical-based Boolean logic circuits)
[108], and optical computing (using photons to perform switching functions and construct logic devices
with nearly speed-of-light efficiency) [109]. These possibilities (or some equally exciting technologies
as yet unknown) will undoubtedly become useful in the century to come. 

CONCLUSION

Theoretical predictions about the structure and properties of molecules have come a long way since
1929. Even as early as 1959, the advances made in quantum chemistry were significant enough to war-
rant a review. In their famous “Broken Bottlenecks” article, Mulliken and Roothaan made their own
pronouncement about the efficacy of quantum chemistry: 

Looking toward the future, it seems certain that colossal rewards lie ahead from large quan-
tum–mechanical calculations of the structure of matter [110]. 

In 1984, one of us commented in a review of the quantum chemical literature: 

We are confident that by the year 2000, essentially all fields of chemistry will acknowledge
the accuracy of Mulliken and Roothaan’s prophecy [111]. 

It is now time to note the accuracy of both prophecies, and to make a new one: We, as quantum
chemists, now predict that by the year 2100, those “colossal rewards” will have been largely realized,
and their consequences will be so striking that essentially all fields of sciencewill acknowledge the
accuracy of Mulliken and Roothaan’s prophecy. 
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