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Simulations on many scales: The synapse as an
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Abstract: Computer simulation methods spanning several temporal and spatial scales are re-
viewed, focusing on their applications on the neuromuscular synapse. Quantum mechanics
treats the enzymatic catalysis of neurotransmitters on the picometer scale. Molecular dy-
namics reveals conformational changes of the enzyme acetylcholinesterase for nanoseconds.
Brownian dynamics follow the substrate molecule in its diffusion on the microsecond level.
Methods such as finite elements describe the diffusion of neurotransmitters as a changing
concentration continuum in the synapse. Promising directions for future research include in-
tegration of methods on several scales, and applying these methods to the acetylcholine re-
ceptor.

OVERVIEW

With the development of both theory and computer technology, simulation has become a viable way of
investigating the behavior of molecules. A series of simulation methods are now available to address
chemical questions at several time and length scales [1]. The success of these methods in “pure”, theo-
retical chemistry has been matched by their applications in materials science. 

Biochemistry, the molecule-based study of life, also requires understanding on several scales,
some of which are not readily reached by experiment. Encouragingly, it is possible to apply the simu-
lation methods in biochemistry (Fig. 1, p. 298). Here, some of these endeavors—as applied on an ex-
ample, the synapse in the nervous system—are discussed, after a short presentation of several simula-
tion methods for different temporal and spatial scales. 

Quantum mechanics (QM) calculations have been firmly established as a rigorous methodology;
their pioneers were awarded a Nobel Prize in chemistry in 1998 [2,3]. Combined with larger-grain
methods such as molecular dynamics (see below), treatment of enzymatic catalysis to a degree compa-
rable to that for small-molecule reactions is feasible.

First applied to proteins more than 25 years ago by McCammon and coworkers [4], the method
of Newtonian molecular dynamics (MD) has now entered the mainstream of biochemistry [5]. MD
aptly reveals the macromolecular conformational changes on the nanosecond-level, filling a time-reso-
lution gap (until recently) long left by experimental methods. 

The methods MD, Brownian dynamics (BD) [6], Monte Carlo (MC) simulation, and the finite el-
ements (FE) [7] together offer a spectrum of tools, describing diffusion either in a discrete fashion—
molecule-by-molecule—or as a continuum of concentration. Recently, other mesoscale and multiscale
methods have emerged, with the promise of bringing up the scale of simulations to the cellular level.
Ambitious projects aim at yet larger scales, but they lie beyond the scope of this review [8,9].

*Pure Appl. Chem. 76, 263–319 (2004). A collection of invited, peer-reviewed articles by the winners of the 2003 IUPAC Prize
for Young Chemists.
‡Fax: +44 1865 275182; E-mail: kaihsu@biop.ox.ac.uk



NEUROTRANSMITTER DIFFUSION IN THE SYNAPSE: FINITE-ELEMENT AND MONTE
CARLO SIMULATIONS

The synapse is the point of communication where a neuron sends its signal to another cell. There are
two types of synapses, categorized by the manner of transmission: electrical synapses and chemical
synapses [10–12]. The discussion here focuses on the neuromuscular junction (NMJ), the chemical
synapse between the neuron and the muscle cell. The geometries of the synaptic cleft, bounded by pre-
and postsynaptic membranes, differ by muscle type.

Synaptic signal can be carried by the neurotransmitter acetylcholine (ACh) [13], which is released
by the neuron upon arrival of an action potential. ACh diffuses across the cleft, binds to and activates
the postsynaptic acetylcholine receptors (AChR), generating a response in the receiving cell. The en-
zyme acetylcholinesterase (AChE) quickly hydrolyzes ACh to acetate and choline, deactivating the re-
ceptor and tapering off the response.

This diffusion process of neurotransmitters in the synapse has been simulated by solving differ-
ential equations governing the diffusion–reaction of the neurotransmitter concentration seen as a con-
tinuum using FE [14–16]; or by tracking the diffusion–reaction of each neurotransmitter molecule using
MC simulations [17,18].

MC simulations model the neurotransmitter diffusion by carrying out grid-free (that is, undis-
cretized) 3-dimensional random walks of each molecule. During the random walk, the molecule en-
counters surfaces and effector (receptor and esterase) sites. The outcome of encounter is determined by
MC probablistic criteria for the acceptance or rejection of a proposed step. The parameters are set to fit
analytical results of diffusion and reaction processes.

The FE method, on the other hand, discretizes the 3-dimensional space but sees the neurotrans-
mitter as continuous concentration. At each vertex of the discretized space sits a simple function—an
element—to represent the value of the neurotransmitter concentration. The diffusion equation is solved
in time over this spatial domain to represent the movement of this concentration. 

Both methods have been improved to accommodate geometries coming straight from 3-dimen-
sional electron tomography [19,20] rather than simple, rectangular models, affording simulations up to
the millisecond scale. At the moment, the FE models are not as mature as Monte Carlo ones in repre-
senting all the components in synaptic transmission, and thus may not fit the experimental results as
well. However, to reflect muscle contraction, changing spatial domain is possible in FE. Therefore, ef-
forts in integrating these two methods will be worthwhile.

DIFFUSION OF THE SUBSTRATE TO THE ENZYME: BROWNIAN DYNAMICS

Brownian dynamics uses a stochastic algorithm to simulate the diffusion of a substrate molecule under
the influence of an enzyme. Consider how a substrate molecule gets to the enzyme molecule: At infi-
nite separation, the interaction between the two molecules is nearly isotropic and negligible; the diffu-
sion of the substrate area relates only to the diffusion coefficient—the reaction rate due to this “far” part
may be analytically obtained. Upon close approach, the interaction becomes significant in addition to
the Brownian, stochastic motions; it is at such a “begin surface” that the enzyme imposes its electro-
statics on the substrate in BD simulations. Observing the odds of the substrate succeeding in being cat-
alyzed by the enzyme against that of it diffusing away to a “quit surface” (a stand-in for infinite sepa-
ration), the reaction rate due to the close approach may be found. Multiplying the analytical “far” rate
with this “near” rate, BD can be used to obtain reaction coefficients comparable to those obtained from
experiments [6]. 

This method has been used to explain the electrostatic effects of mutant AChE observed in ex-
periment [21]. The kinetic observations can be reproduced at the microsecond scale, even when a pep-
tidic snake-toxin inhibitor is involved [22]. (See below for more BD applications.) 
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CONFORMATIONAL CHANGES IN ACETYLCHOLINESTERASE: MOLECULAR
DYNAMICS

Dynamical selectivity at the gorge

The enzyme AChE has several intriguing qualities. First, its key responsibility for regulating synaptic
transmission has made it a target of several chemical agents: from the drugs countering Alzheimer’s dis-
ease [23,24] and myasthenia gravis (serious muscle weakness) [25], to snake toxins and chemical
weapons (such as sarin and VX) [26]. Second, the active site of AChE is buried 2 nm deep in the cen-
ter of the enzyme, and connected to the protein surface by a narrow “gorge” [27]. This design is coun-
terintuitive, considering the rapid catalysis of AChE; however, it has been suggested that selective con-
trol of substrate entry may be facilitated by a dynamical, fluctuating gorge [28,29]. 

In the static crystallographic structure, fasciculin obstructs the entrance to the gorge, but it does
not reach down the gorge. Two MD simulations have been performed from this structure, each amount-
ing to several nanoseconds: one of AChE by itself [30–32], the other of AChE with a snake toxin, fas-
ciculin [33,34]. 

Mechanisms of AChE inhibition by fasciculin

Measuring the width (“proper radius”) of the gorge every picosecond in the simulations, a histogram
can be made of its distribution [35]. Strikingly, this is not simply a symmetric, Gaussian distribution;
there are two substates, one wider and one narrower. In addition, fasciculin shifts the whole distribution
toward lower width values, and favors the narrower substate. These observations suggest that fasciculin
restricts AChE gorge fluctuation in a dynamical fashion. 

The average structures from the two simulations showed that the active site of AChE was
changed: the histidine residue that served as the bridge in the proton-transfer pathway during catalysis
has been oriented away from its normal position. As fasciculin did not reach down to the active site, this
disruption of the active site could only happen by allosteric means. 

In summary, fasciculin inhibits AChE by three mechanisms: (i) steric obstruction of the entrance
of the gorge; (ii) dynamic restriction of gorge width; and (iii) allosteric disruption of the active site con-
formation. The first is a direct observation from the static crystallographic structure; the latter two are
observations from the simulations.

“Porcupine plots”: Visualizing concerted motions in AChE gorge fluctuation

What controls the fluctuation of the AChE gorge? Is it merely the movements of a few residues around
the gorge bottleneck, or are there more global motions at work? Without an analytical tool at hand, it is
difficult to sort through the large amount of data from the simulations in order to determine one way or
the other. A simple device—the porcupine plot—can help us understand the correlation of motion in
different parts of the protein with a functionally important motion, the fluctuation of the gorge width in
this case.

By plotting the correlation vector between the movement of each α-carbon atom and the gorge
width, one sees the likelihood and direction of concerted motions of different parts of the protein when-
ever the gorge becomes open. The viewer looks down the gorge in the figures discussed below. In Fig. 2,
the gorge opening not only involves the residues near the gorge, but even residues some distance from
the gorge also move concertedly to make way for the gorge to open. With fasciculin bound (Fig. 3),
much of this coordination has been suppressed; this may be one of the mechanisms by which fasciculin
restricts the opening of the gorge. The simple device of porcupine plot has proven to be useful in visu-
alizing the concerted motions in proteins. 
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These nanosecond-scale simulations have enabled us to make comparisons with experiments.
Fluorescence anisotropy decay experiment, a method detecting fast motions in proteins, has the resolu-
tion of nanoseconds. The simulation results has been confirmed by comparing the decay of anisotropy
due to protein segmental motions calculated from simulation and that observed from experiment [36].
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Fig. 2 Porcupine plot from the simulation of AChE by itself. The color of each vector corresponds to the magnitude
thereof.

Fig. 1 Multiscale modeling as applied to biomolecular systems; after [1]. The inset images illustrate the scale each
modeling method covers (courtesy of the McCammon Group).



Docking studies

After performing MD, it is possible to dock ligands to several snapshots (instantaneous conformations
of the molecule) obtained therefrom; this is called the multiple docking method. Several ligands were
docked to snapshots from MD trajectories of unliganded and ACh-bound AChE [37]. Kinetic coeffi-
cients from experiments were reproduced from docking energies. In addition, it is found that ACh sta-
bilizes the catalytic triad and makes ligand binding even more favorable. 

Catalysis, enzymatic or not, is based on the lowering of activation energy. Mutants can easily be
made in simulation to understand better the basis of catalysis in AChE [38]. Extending previous find-
ings, perturbations that decrease steric complementarity affect binding unfavorably. One essential ad-
vantage of such simulations is the ability to test theories where experiments are not readily feasible: for
example, “turning off” electrostatic charges; testing a sizeable collection mutant–ligand pairs.

Movements of water

At this point, it is appropriate to review the sequence of events occurring to the substrate ACh, and the
relevant simulation methods. Starting some distance away from AChE up to its surface, the long-dis-
tance diffusion is covered by FE and BD simulations. From there to the active site, the close contact is
covered by MD. In FE and BD, water is treated with bulk parameters; in MD, the position each water
molecule can be explicitly tracked. MD reasonably reproduces the bulk properties of water, providing
a connection between the scales. Furthermore, sites frequented by water molecules on the surface of
AChE have been identified; the movements of water molecules among the sites and into bulk were
measured [39]. 

Once ACh gets to the surface of AChE, it has to go down the gorge. At this point, the effects of
water molecules in the gorge—rather than in the bulk—become prominent: they have to “get out of the
way” for ACh to enter, and for the product of hydrolysis to escape from the gorge. In the MD simula-
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Fig. 3 Porcupine plot from that of AChE, when fasciculin (not shown) is bound. The color of each vector
corresponds to the magnitude thereof.



tions, fluctuations in the number of the gorge water molecules, and the occurrence of transient cavities
points to processes that aid substrate entrance and product escape [40].

Ligand crossing the barrier

The MD method can be extended to investigate phenomena of particular interest. Two such extensions
have been carried out on the AChE gorge to probe the entrance and escape of ligands: one used steered
MD, which pulls the ligand from the gorge by force, to model ligand escape [41]; the other uses um-
brella sampling, which uses potential wells to restrict the ligand, to obtain better sampling of confor-
mational changes in AChE as a ligand moves in the gorge [42]. The latter study provided a potential of
mean force for the ligand in the gorge. The findings from these studies imply facile ligand movement
in the gorge given changes in AChE conformation—local or global—the design of AChE does not seem
to be so counterintuitive after all. 

Recalling previous BD work [21,22] including the simplified BD models explaining dynamical
selectivity [28,29], a current BD study [43] attempts to apply the potential of mean force obtained from
the umbrella-sampling MD, presenting a comprehensive picture of gorge dynamical selectivity.

CATALYSIS AT THE ACTIVE SITE: QUANTUM MECHANICS

Due to limits in computational power, enzyme systems are too large to treat in whole with QM calcu-
lation. It is encouraging that the mechanics that enabled MD may be mixed with QM to give “QM/MM”
simulations: molecular mechanics (MM) takes care of the global conformational changes while QM
treats the bond-making/bond-breaking processes at the active site, which is beyond the capability of
MM. This mixed method has been used to confirm the experimentally observed acylation energy bar-
rier for catalysis in AChE and the effect of an “oxyanion hole” formed by three residues in stabilizing
high-energy transition states [44,45]; such investigations would be impossible with only conventional
MD. It also showed the effects of global enzyme conformation on catalysis, highlighting the importance
of MM in complementing QM calculations [46].

CONCLUSION AND PROSPECTS

Here, a series of simulations at different scales applied on molecules and processes in the synapse has
been presented, with MD being the centerpiece from which this tour d’horizon extends. Note that at the
moment the pieces in this tour have been done disjointly, though each endeavors to connect with its
neighbors in the next scale. Reports of successful multiscale imaging have appeared [20,47]. The time
may be ripe for synchronous multiscale simulations, where simulations of different scales run at the
same time on computers and feed results as parameters into each other. A missing piece in simulating
the synapse is AChR. Very recently, useful high-resolution structures thereof have become available
[48–50]; this is another promising project [51].
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